Minor Computer Vision & Data Science Learning Outcomes – overview

Academic year 2020-2021

Context

The minor is tested integrally with three learning outcomes. Table 1 shows the context in which these learning outcomes are tested.

	Assessment
Independence	 Cooperates under supervision with specialists and peers. Responsible for results of own work and study. Responsible for managing own workflow. Assesses based on available information, considering social and scientific context.
Complexity	 Specific work environment with some uncertainties. One problem with multiple competing solutions. Existing knowledge is available.

 Table 1: Context of Learning Outcomes Minor of Computer Vision & Data Science

Learning Outcomes

The Minor of Computer Vision & Data Science has three Learning Outcomes. Table 2 shows the Learning Outcomes, including the indicators used to assess each Learning Outcome and the deliverable that can be used proving the indicator.

LOC1	The student selects, applies and tests, within a team and methodologically correct, machine- learning algorithms that automate visual inspections that meet the project's specifications.			
	 Has knowledge and skills in the fields of computer vision, machine learning and deep learning and knows how to apply them. 	Topics		
	 Can make a substantiated choice for materials and methods and documents and uses them correctly. The student can document specifications and can evaluate quality with the supervisor. 	Paper		
	 The quality of the prototype is of a sufficient level in relation to the complexity. Can apply and test based on project's specifications. Can demonstrate their prototype to the supervisor and explain it with the correct level of complexity. 	Prototype		
	 Takes responsibility for their own work. Uses a research management method and applies it correctly. 	Process		
LOC2	The student creates and manages, under supervision, a representative annotated and balanced dataset with the required quality to test machine-learning algorithms.			
	 Has knowledge and skills in the fields of computer vision, machine learning and deep learning and knows how to apply them. 	Topics		
	 Can describe the dataset and substantiate choices for contents, annotations, structure and storage. Substantiates choice with regards to imaging hardware and the configuration. 	Paper		
	 There is a representative annotated and balanced dataset. The dataset is easy to use for applying and testing algorithms. Can analyze and evaluate the performance of the methods on the datasets of the project. 	Prototype		
	 Acts ethically with regard to data management, privacy and 	Process		

	confidentiality.	
LOC3	The student develops himself as a professional.	
	 Has knowledge and skills in the fields of computer vision, machine learning and deep learning and knows how to apply them. 	Topics
	 Can write a technical paper with a clear, consistent and convincing narrative. Performs a survey of related topics. 	Paper
	• The student shows his own input in the project, can substantiate and explain it.	Prototype
	 Contributes to a congress and can present their work to a broad audience. The student asks for feedback on his development and makes demonstrable use of it. 	Process

Table 2: Learning Outcomes Minor of Computer Vision & Data Science with indicators and deliverables