
On the scalability of CNNs for apple detection using RGBD data
NHL Stenden Lectoraat in Computer Vision & Data Science
This concept paper is under review by the supervisors.

Koen Molenaar
Supervisors: Maya Aghaei Gavari, Willem Dijkstra

Abstract—Picking apples is a highly repetitive task that can be automized using AI. In these tasks, the importance of portable, and
low cost devices becomes present. Because the robot should be able to cover large distances outside, carrying big and expensive
machines would not be productive and would create dangers. This robot requires the ability to locate the apples, which can be done
using machine learning algorithms like Neural Networks. Convolutional Neural Networks are often used for these tasks involving
images. Among portable devices specially made for these tasks, there is the Jetson Nano, a device created by Nvidia. We trained
multiple models using a dataset of apples including depth values. We also augmented the data so the model would generalize
better. We found that using depth data improves the F1-score of the predictions of the models by a few percent consistently. Using
augmentations, however, did not result in such conclusive results. Overall, the difference in performance between the models trained
on RGB data, and augmented RGB data was negligible. When testing the performance of the models on the Jetson Nano, we found
that the difference in inference time was often about 15x longer than on more powerful, non-portable machines. The usability of the
Jetson Nano fully depends on the inference time required. This paper can be used as a basis for deciding the usability of the Jetson
Nano on certain object detection tasks.

Index Terms—Object Detection, Neural Networks, Jetson Nano

1 INTRODUCTION

In the Netherlands, apple production is about 220 thousand tonnes per
year [1]. Given that the average apple is 100 grams, this equates to
2,2 billion apples per year. Picking these is a highly repetitive and
labor-intensive job, which gives a good opportunity for automation.
During the automation process, the apples will be picked by a robot.
To do that, the robot has to be able to detect and localize the fruit.
This process can be done by using machine learning algorithms, for
example, Neural Networks. There are different types of Neural
Networks like MLP (multi-layer perceptrons), RNN (Recurrent
Neural Networks), and CNN (Convolutional Neural networks). CNNs
are often used for problems with images because they specifically
extract image features like the shape of the objects. CNN’s typically
are comprised of a few types of layers: convolutional layers which
extract features from the image, max-pooling layers which reduce the
dimensions of the feature maps, and fully connected layers which
learn from the features extracted. Depending on the final layer, there
will be given a probability for each class of image it could be.

Detecting fruits in real-time with CNNs is often a computationally
expensive task. To make the application of this task as accessible as
possible, these networks should be tested on more portable and
cheaper machines, like the Jetson Nano. This device by Nvidia can
run multiple Neural Networks in parallel for applications like image
classification, object detection, segmentation, and speech processing
[2].

Besides normal cameras that save images in RGB format, there are
3D cameras, like the Microsoft Kinect Sensor [3], which also captures
the depth data. In practice, when the fruit picking robot extends its
arm, this depth data can be important in knowing how far the robot
has to reach. Because of this, it would be interesting to see how the

• Koen Molenaar is a Computing Science student at the NHL Stenden
University of Applied Sciences, E-mail:
koen.molenaar@student.nhlstenden.com.

• Maya Ahaei Gavari is a researcher at the NHL Stenden Lectoraat in
Computer Vision & Data Science, E-mail:
maya.aghaei.gavari@nhlstenden.com.

• Willem Dijkstra is a researcher at the NHL Stenden Lectoraat in Computer
Vision & Data Science, E-mail: willem.dijkstra@nhlstenden.com.

additional depth data influences the quality of predictions using CNNs.
The goal of this paper is to test to what extent object detection

models can be exported to cheaper, more portable devices like the
Jetson Nano. This way processes like apple picking can be automated
and be more widely used due to the accessibility.

1.1 Research Questions
In this paper, we aim to answer the question: How well do object
detection algorithms using CNNs perform on the Jetson Nano?
Besides, we want to find out whether the extra depth data or using
augmented data will give better metrics in object detection.

More detailed, we want to answer the following questions:

• Which object detection model is the most accurate at detecting
and localizing apples?

• Does using the available depth information give better results for
detecting the apples?

• Does using augmentations on the images give better results for
detecting the apples?

• To what extent can object detection models be exported to the
Jetson Nano?

2 STATE OF THE ART

In this section, we will look at the existing papers on apple detection
with neural networks. Here, we also look at existing papers on RGB-D
data as the input to the selected object detection algorithms.

2.1 Object Detection for Apples
There have been a few research papers on the detection and
localization of fruits. In this paper, [4] the authors suggest that the
improved YoloV5 model gives higher scores and recognition speeds
than other well-known models like EfficientDet-D0. What is missing
in their work is testing the performance on smaller, less powerful
devices.

The KFuji paper [5] describes how the researchers created a
high-quality dataset containing images of orchards, including the
extra depth dimension that can be used for object detection models.



In our research, we will use this dataset for benchmarking a set of
object detection models using different image modalities. The dataset
contains images of apples in an apple orchard, with a total of 12,839
manually annotated apples and 967 multi-modal images, namely
RGB, depth, and IR intensity. The KFuji paper describes the process
of creating a dataset for doing object detection in orchards and
provides test results on a Faster R-CNN network. The authors did not
use the following object detection models that we would like to use:

EfficientDet [6]. EfficientDet is an algorithm that detects and
recognizes various objects in an image. It has multiple scaling levels,
meaning different sizes of the network are available.

YOLOv5 [7]. YOLO stands for You Only Look Once, this is also an
algorithm that detects and recognizes various objects in a picture. It is
similar to EfficientDet in that it has multiple scaling levels and thus
different sizes.

3 MATERIALS & METHODS

This section describes the materials and methods used throughout the
experiments, such as the dataset, hardware, and evaluation metrics

3.1 Dataset
This project makes use of the publicly available dataset KFuji
RGB-DS [5]. The KFuji RGB-DS dataset contains multi-modal
images of Fuji apples on trees collected with Microsoft Kinect v2.
Since the performance of the depth sensor degrades when exposed to
direct sunlight, all the images were taken at night under artificial
lighting. Furthermore, the weather was clear at the time the images
were taken. Each image includes information from three different
modalities: color (RGB), depth (D), and range corrected intensity (S).
All images were manually labeled with rectangular bounding boxes,
resulting in 12,839 apples labeled across the dataset.

The dataset contains two types of data: raw data and pre-processed
data. There are a total of 110 raw RGB images with sizes of 1080 x
1920 pixels. Each raw image is separated into nine tiles due to too
many apples per image, and the fruit size is relatively small to the
image size. A 3 x 3 grid of the original raw image is used to generate
the tiles. After slicing, the pre-processed images have a size of 373 x
548 pixels (h x w). There is a 20-pixel overlap between the sliced tiles
and the raw images to avoid partially split apples at the boundaries of
different tiles. Images captured while slicing where there are no
apples will not be saved. Eventually, there were 967 pre-processed
images. The manually annotated bounding boxes for the 967 images
are calculated. There are a total of 13,385 annotations for the
pre-processed images. The difference with the 12,839 annotations in
the raw images is the overlapping apples in the pre-processed images.

Fig. 1: RGB, depth and IR intensity respectively

An example of an RGB and depth image is shown in Figure. The
color image with apples in orchards has three channels: red, green,
and blue. The depth image has a single channel that only contains
information about the distances to the camera. The values of the depth
data were normalized between values of 0 and 255. This normalization
is desirable to ensure fast convergence of the neural network

In total there were 110 multi-modal images which the authors tiled
into 9 images of 373 x 548. If there were no apples in that section
of the image, they left it out. After the tiling, there are a total of 967
images. Each of these images has been annotated with the bounding
boxes of the apples.

In [8] the same authors of [5] used a split ratio for training,
validating, and testing their models of 64:16:20, which results in 619,

155, and 193 images respectively. Because we want to compare our
models with theirs, we use the same training, validation, and testing
set.

3.2 Detection Algorithms
This section describes the different detection algorithms which we will
be using and their architectures.

3.2.1 YOLOv5
YOLO is an abbreviation for ”You Only Look Once”. It is a family of
deep learning models designed for fast object detection using CNNs.
The YOLOv5 model architecture is based on YOLOv3 with some
differences. YOLOv3 [9] exists of 53 CNN layers (Darknet-53). On
top of that, there are 53 other layers for the detection part. On the
other hand, the YOLOv5 architecture [7] consists of three parts: (1)
backbone: CSPDarknet, (2) neck, PANet, and (3) head: YOLO
layers. The backbone is used for feature extraction, the neck is used
for feature fusion, and the head is used for the detection outputs.

YOLO uses anchor techniques to decide whether predictions are
actual objects. Both YOLOv3 and YOLOv5 predict off-sets from a
pre-determined set of boxes with specific height-width ratios. These
anchor boxes are optimized on the COCO dataset. However, in the
repositories, there is the option ’auto-anchor’, which optimizes the
anchor boxes for the specific dataset used.

The YOLOv5 repository contains four pre-defined models to
choose from, namely YOLOv5s, m, l, and x with YOLOv5s being the
smallest and YOLOv5x being the largest. The differences between
these have to do with the scaling multipliers of the model, which
scales the network’s width and depth. The YOLOv5 models will
downsample the input data with a factor of 32, 16, and 8 at three
different scaling levels. Therefore, the input image of these models
must be divisible by 32 pixels.

Fig. 2: YOLOv5 architecture [10]

3.2.2 EfficientDet
EfficientDet is a family of object detection models. In [6] the authors
introduced a systematic way of model scaling which affects the
network depth, width, and resolution. This can lead to better
performance.

In figure 3 the architecture of EfficientDet is shown. It consists
of three parts: (1) the backbone, (2) the feature network, and (3) the
detection head.

BIFPN serves as a feature network for the EfficientDet models. It
takes level 3-7 features (P3, P4, P5, P6, P7) from the backbone
network which will be fused using a top-down and bottom-up
bidirectional feature fusion. These fused features are then passed to



the head of the model. The head generates coordinates for the
bounding boxes and the predictions for the object classes.

EfficientDet can use compound coefficients from 0 to 7, which
decides the level of scaling. The higher the number, the bigger the
model.

Fig. 3: EfficientDet architecture [10]

3.3 Metrics
To compare each network, we need to determine how each model
performs. For this, we need quantitative metrics. In this section, we
explain which metrics we used, and what they mean. They all build
on top of TP, FP, FN, and FN.

• True Positive (TP) are the cases that have been predicted as an
apple, and there is an apple.

• False Positive (FP) are the cases that have been predicted as an
apple, and there is no apple in reality.

• False Negative (FN) are the cases that have been predicted as
not an apple, and there is no apple in reality.

• False Negative (FN) are the cases that have been predicted as
not an apple, and there is an apple.

Precision is a measure that tells, from the current predictions, how
many of them are correct. It is calculated by dividing the correct
positive predictions by the total of positive predictions. See equation
1.

Precision =
Correct positive predictions
Total positive predictions

=
T P

T P+FP
(1)

Recall is an indicator that represents the percentage of correct
positive predictions over all the positive labels. It is calculated by
dividing the correct positive predictions by the total of positive labels.
See equation 2.

Recall =
Correct positive predictions

All postitive labels
=

T P
T P+FN

(2)

F1-score is the weighted average of precision and recall. It is
calculated by multiplying the product of precision and recall times 2
and dividing that by the sum of precision and recall. See equation 3.

F1 =
2 · precision · recall

precision + recall
(3)

Average Precision. Mean Average Precision (mAP) is the metric
summarizing the precision-recall curve into a single value that
represents the average of all precisions. The precision-recall curve
shows the trade-off between the two metrics for different thresholds.
In the case of our dataset, which only has one class, the average
precision is calculated.

3.4 Software and Hardware Specifications
In Table 1 the hardware specification used in the experiments is
shown. VM-CVDS was used for training and testing the object
detection models. The Jetson Nano is solely used for testing the
models.

Computer name GPU GPU RAM RAM CPU
VM-CVDS GeForce RTX 2070 8 GB 16 GB Intel i9-7960X
Jetson Nano 128-core Maxwell™ - 4 GB Quad-core A57

Table 1: Hardware specifications

On VM-CVDS all programming was done with Python 3.8.5
whereas, on the Jetson Nano, Python 3.6.9 was used. Table 2
provides an overview of the essential Python packages. Data
processing was primarily done with OpenCV and NumPy. PyTorch
1.8.1 is used for the handling of the object detection models including
training, validating, and testing.

Package Version VM-CVDS Version Jetson Nano URL
NumPy 1.19.5 1.19.4 numpy.org

OpenCV-python 4.5.1.48 4.1.1 opencv.org
SciPy 1.6.0 1.5.4 scipy.org

Matplotlib 3.3.3 3.3.4 matplotlib.org
PyTorch 1.7.1 1.9.0 pytorch.org

Table 2: Relevant Python packages

4 EXPERIMENTS & RESULTS

In this section, we will explain which experiments we ran. The
experiments will compare different object detection models discussed
in section 3.2. With these models, we intend to answer the question
of whether using the extra depth input results in better metrics. The
other question is whether using augmentations within this dataset is
helpful for getting better detection results. After this, we want to find
out to what extent these models can be exported to the Jetson Nano.

4.1 Experiment A
In experiment A, we intended to find the best object detection model
on our dataset. The utilized CNN architectures include YOLOv5 with
sizes S, M, and L, and EfficientDet with compound coefficients D0,
D1, D3, and D4. For all the EfficientDet models, we use
EfficientNet-B0 as the backbone of the model. The data will not be
augmented, meaning that apart from a resize and normalization, the
images will not change. We expect that bigger models perform better
than the models with smaller sizes in both networks, as they did in
their respective papers [9, 6]. For YOLOv5, the input size was
608x608, and the input size for EfficientDet was 512x512.

4.1.1 Results from Experiment A
The best models per learning rates are shown in Table 3. Highlighted
are the best model of each type of object detection model. YOLOv5s
with a learning rate 0,001 achieved the highest F1-score of 0,853. For
EfficientDet the best model was EfficientDet D0 with a learning rate
of 0,001. Our expectation was that the larger versions of models
would achieve better results. But since our object detection problem
is relatively easy, only one class is present in very similar images, a
more complex model was not necessary. The same can be found for
EfficientDet, the smaller models slightly outperformed the larger
ones. In [8] the authors trained this model on Faster R-CNN with
optimized hyperparameters and custom anchor aspect ratios and got
an F1-score of 0,867. Thus, Faster R-CNN outperformed both
YOLOv5 and EfficientDet on this dataset. The complete results of
experiment 1 can be found in Appendix A.



Model Size mAP Recall Precision F1
YOLOv5 s 0.796 0.798 0.916 0.853
YOLOv5 m 0.786 0.798 0.899 0.845
YOLOv5 l 0.798 0.742 0.935 0.827

EfficientDet D0 0.713 0.784 0.896 0.836
EfficientDet D1 0.713 0.778 0.894 0.832
EfficientDet D2 0.712 0.784 0.865 0.823
EfficientDet D3 0.716 0.774 0.9 0.832
EfficientDet D4 0.712 0.788 0.871 0.827

Faster R-CNN [8] - 0.927 0.888 0.847 0.867

Table 3: Results of training object detection models on the RGB
dataset. (the learning rates used, were all 0.001)

4.2 Experiment B
With experiment B, we intended to answer the question about the
influence of augmentations. Here we trained and tested object
detection models on the Kfuji dataset, but this time with
augmentations. Because object detection models generalize better
with augmentations, we expect the results to be slightly better than in
experiment 1 without augmentations. The following augmentations
will be used in this experiment:

• MedianBlur (blur-limit 3, probability 0.3) (See Figure 4c)

• RandomBrightnessContrast (brightness-limit 0.2) (See Figure
4c)

• HueSaturationValue (hue-shift-limit 3, probability 0.3) (See
Figure 4c)

• HorizontalFlip (probability 0.5, shared base probability of 0.3
with ShiftScaleRotate) (See Figure 4c)

• ShiftScaleRotate (rotate-limit -15 15, probability 0.5, shared
base probability of 0.3 with HorizontalFlip) (See Figure 4f)

(a) Original (b) BrightnessContrast

(c) Median Blur (d) HueSaturationValue

(e) Horizontal Flip (f) ShiftScaleRotate

Fig. 4: Augmentations used in Experiment B

4.2.1 Results from Experiment B
The best object detection models trained on the augmented dataset
are shown in Table 4. Highlighted are the best models per type of
model. EfficientDet D2 gives in this case the best results with an

F1-score of 0.836. The model trained on just RGB with the same
parameters scored an F1-score of 0.823 in experiment A. This would
indicate that training the model on the augmented version of this
dataset gives better results. However, all the other models performed
slightly better when only trained on RGB data, though the difference
between performance is practically negligible. The best YOLOv5
model here gives an F1-score of 0.846 whereas the same model got
an F1-score of 0.853 in experiment A. The full results can be found in
Appendix A.

Model Size Learning Rate mAP Recall Precision F1
YOLOv5 s 0.0001 0.795 0.778 0.926 0.846
YOLOv5 m 0.0001 0.779 0.764 0.932 0.839
YOLOv5 l 0.0001 0.793 0.716 0.95 0.816

EfficientDet D0 0.001 0.705 0.805 0.856 0.83
EfficientDet D1 0.001 0.697 0.803 0.859 0.83
EfficientDet D2 0.001 0.695 0.807 0.868 0.836
EfficientDet D3 0.001 0.712 0.775 0.896 0.831
EfficientDet D4 0.001 0.611 0.736 0.909 0.814

Table 4: Results of training the object detection models on the
augmented dataset

4.3 Experiment C
In experiment C, we wanted to see whether using RGB-D data instead
of just RGB data causes an increase in metrics in object detection.
We used the models described in Experiment A, but then changed the
input shape in the model from 3 to 4. We expected a slight increase in
metrics since the model has more data per image to learn from.

4.3.1 Results from Experiment C
The best object models trained on the RGBD dataset can be found
in Table 5. The best YOLOv5 model was made with the size small
and a learning rate of 0,0001. That model got an F1-score of 0,867. In
Experiment A, the best YOLOv5 model got an F1-score of 0,853. This
indicates that using the extra depth data with training the model, leads
to better predictions. The same can be found for EfficientDet. The best
EfficientDet model in experiment A got an F1-score of 0.836, whereas
with this experiment it got an F1-score of 0,856. The complete results
for experiment C can be found in Appendix A.

Model Size Learning Rate mAP Recall Precision F1
YOLOv5 s 0.0001 0.801 0.812 0.931 0.867
YOLOv5 m 0.0001 0.801 0.811 0.917 0.861
YOLOv5 l 0.001 0.804 0.795 0.939 0.861

EfficientDet D0 0.001 0.798 0.85 0.859 0.854
EfficientDet D1 0.001 0.8 0.833 0.881 0.856
EfficientDet D2 0.001 0.714 0.819 0.868 0.843
EfficientDet D3 0.001 0.714 0.789 0.908 0.845
EfficientDet D4 0.001 0.714 0.818 0.876 0.846

Table 5: Results of training the object detection models on the
RGB-D dataset

4.4 Experiment D
In experiment D, we wanted to measure the performance of the best
models from experiments A, B, and C. on the various machines and
their respective GPUs. The goal here was to see to what extent object
detection models can be exported to the Jetson Nano. The metric we
are looking for is inference time, which answers the question: how
long does inference on one image take? Because the Jetson Nano’s
hardware is much less powerful than the hardware in the VM-CVDS
(see Table 1), we expect the Jetson Nano to have worse inference times
than on the VM-CVDS.

4.4.1 Results from Experiment D
In Table 6 the performance results of the object detection models on
the different devices are shown. The inference times were collected



after the first 5 images since it would give both devices time to start
their processes. As shown in Appendix B, the metrics are almost
identical compared to Experiment A, indicating the predictions
remain of the same quality when running the models on different
machines. Highlighted are the best models from experiment A. The
highlighted YOLOv5 model shows a mean inference time of 7ms on
VM-CVDS with a standard deviation of 0.26. The mean inference
time of that model was on the Jetson Nano 159ms with a standard
deviation of 1,75ms indicating stable results over the full run, given
that this is only 1.1% of its mean and on VM-CVDS it is 3.7% of its
mean. Some EfficientDet models like efficientdet0 3 0.001 4 had
relatively high standard deviations of, in this case, 6ms, which would
result in more than 20% higher inference times than the average. The
difference between inference times on both devices is considerably
large, on the Jetson Nano, inference time is often 15x larger than the
inference time on VM-CVDS. For tasks where fast inference times
are needed, the Jetson Nano would not be suitable, considering the
fastest YOLOv5 model would give 6,2 frames per second. The
complete results of experiment D can be found in Appendix B.

Model Inf. VM Std VM Inf. JN Std JN
efficientdet0 3 0.001 24 1.6 298 22.32

efficientdet0 3 0.001 a 25 6.03 300 9.78
efficientdet0 4 0.001 24 1.58 298 24.77
efficientdet1 3 0.001 25 1.34 315 21.43

efficientdet1 3 0.001 a 26 1.38 320 8.04
efficientdet1 4 0.001 27 1.44 317 11.95
efficientdet2 3 0.001 28 1.74 370 10.09

efficientdet2 3 0.001 a 60 1.74 603 11.54
efficientdet2 4 0.001 29 1.71 342 9.28
efficientdet3 3 0.001 31 1.28 433 15.46
efficientdet3 4 0.001 31 4.76 429 12.91
efficientdet4 3 0.001 34 1.56 552 14.15
efficientdet4 4 0.001 35 1.87 578 16.07

yolov5l 3 0.001 26 0.46 723 13.67
yolov5l 3 0.001 a 26 0.36 862 5.1
yolov5l 4 0.001 25 0.45 770 10.32
yolov5m 3 0.001 13 0.54 388 24.84

yolov5m 3 0.001 a 13 0.21 388 28.24
yolov5m 4 0.001 13 0.38 393 19.65
yolov5s 3 0.001 7 0.26 159 1.75

yolov5s 3 0.001 a 8 0.34 159 4.42
yolov5s 4 0.001 8 0.4 163 15.7

Table 6: Results of testing the object models on the Jetson Nano on
inference time per image (values in ms). The model name follows the

notion ab c d e where a implies the type of model, b implies the
model size, c implies the number of channels used (3 for RGB, 4 for
RGBD), d implies the learning rate, and e implies whether the data is

augmented or not

5 CONCLUSION & DISCUSSION

The goal of this research was to see how well object detection
algorithms using CNNs perform on the Jetson Nano, a portable
device designed for running Neural Networks. For this, we
formulated the following questions:

• Which object detection model is the most accurate at detecting
and localizing apples?

• Does using the available depth information give better results for
detecting the apples?

• Does using augmentations on the images give better results for
detecting the apples?

• To what extent can object detection models be exported to the
Jetson Nano?

To answer these, we set up four experiments, A to D. First, we
wanted to answer the question to which object detection model

performed the best on our dataset. In this case, that was YOLOv5s
with a learning rate of 0,001 (see Table 3). For each type of model,
YOLOv5, and EfficientDet, we ran using each of their respective
sizes, and the learning rates 0,001 and 0,0001. These results set a
baseline for the coming experiments.

The next question was whether altering the dataset with
augmentations would improve the predictions of the models. The
augmentations we chose are listed in section 4.2. This resulted in the
best YOLOv5 model having a slightly lower F1-score compared to
the baseline we set in Experiment A. The best EfficientDet model
however had a slightly higher score than in Experiment A, indicating
that augmentations have some effect on the predictions. But when we
take into account the magnitude of difference between these results
and the results from RGB, we can conclude that the augmentations
did not affect the quality of predictions. This could be because the
dataset did not have enough variety for the augmentations to have any
effect. The YOLOv5 algorithm included the default built-in
augmentations, which could have affected these results. This could
further have been investigated by turning those off and comparing the
results.

In the dataset, extra data was available, namely depth and IR
intensity values. In this project, we only looked at the effect of using
the extra depth data in combination with the regular RGB data. On all
the tested models found in Table 5, the usage of depth data caused an
increase in metrics. This can be understood by knowing some apples
were not visible using only the RGB data. But if you look at the
depth data in a greyscale form of the same picture, the outlining of
some apples becomes visible (see Figure 1).

The last question was regarding the performance in terms of
inference speeds. We made a performance script, loading the images
one by one and feeding them into each object detection model (See
Table 6). As we see there was a large difference between average
inferences times between the machines, on the Jetson Nano, the
inference process often took 15x longer. The reason behind this is
that the machine VM-CVDS has much more resources available such
as memory, and has more CUDA cores to utilize (See Table 1).

6 FUTURE WORK

We think that the next steps in this research are to use smaller models
and optimize hyperparameters. As shown in Experiment A, using
smaller models, does not result in worse results. In this case, it results
in quite the opposite. Now, this does not mean any smaller model
would work, but there are options like YOLOv5n, which is 4 times
smaller than YOLOv5s but remains with the same YOLOv5
architecture. It just uses a smaller level of scaling. The fact that in all
cases, the best model has been found within the first 10 epochs, only
strengthens the suggestion that lesser complex and smaller models
can be used in order to get lower inference times and get similar
predictions.

As stated before, the authors in the KFuji paper [8] achieved better
predictions using Faster R-CNN. However, they had to do several
things to achieve this. One thing they did was tuning the
hyperparameters. The next step in this research is to do the same with
the hyperparameters of the YOLOv5 and EfficientDet models.

The augmentations used were decided qualitatively. This means
looking at the dataset seeing how the images differ from each other
and looking for transformations to make these differences as small as
possible. Potentially there are better combinations of augmentations
to use on this dataset which could cause an increase in performance.

We used the additional depth data in a naive way, namely adding
an extra input channel. There may be better ways to process this
depth data, as shown in this paper [11]. There the authors compare
the naive way of using depth data, with using a geocentric embedding
derived from the depth data in addition to RGB data. This geocentric
embedding contains disparity, height, and angle values. In their paper,
they suggest that this is a more effective method of using depth data.

Finally, during the performance testing on the Jetson Nano, the
device got very hot. This is what you could expect when running
neural networks on the GPU, but this could lead to thermal throttling.



This means the GPU’s performance is limited by the high
temperatures to not overheat and damage components. For the Jetson
Nano, there are fans available to cool down the device when turned
on. In order for better performance on the Jetson Nano, this is an
important step in the research on the applications of the Jetson Nano.

REFERENCES

[1] Koen van Gelder. Netherlands: apple production 2020, Mar 2021.
[2] Jetson nano developer kit, Apr 2021.
[3] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE

Multimedia, 19(2):4–10, 2012.
[4] Bin Yan, Pan Fan, Xiaoyan Lei, Zhijie Liu, and Fuzeng Yang, Apr 2021.
[5] Jordi Gené-Mola, Verónica Vilaplana, Joan R. Rosell-Polo, Josep-Ramon

Morros, Javier Ruiz-Hidalgo, and Eduard Gregorio. Kfuji rgb-ds
database: Fuji apple multi-modal images for fruit detection with color,
depth and range-corrected ir data. Data in Brief, 25:104289, 2019.

[6] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable
and efficient object detection, Jul 2020.

[7] Ultralytics. ultralytics/yolov5: Yolov5 in pytorch ¿ onnx ¿ coreml ¿ tflite.
[8] Jordi Gené-Mola, Verónica Vilaplana, Joan R. Rosell-Polo, Josep-Ramon

Morros, Javier Ruiz-Hidalgo, and Eduard Gregorio. Multi-modal deep
learning for fuji apple detection using rgb-d cameras and their radiometric
capabilities. Computers and Electronics in Agriculture, 162, 2019.

[9] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018.

[10] Renjie Xu, Haifeng Lin, Kangjie Lu, Lin Cao, and Yunfei Liu. A forest
fire detection system based on ensemble learning. Forests, 12:217, 02
2021.

[11] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik.
Learning rich features from rgb-d images for object detection and
segmentation. Computer Vision – ECCV 2014 Lecture Notes in Computer
Science, 2014.



A EXPERIMENT A-C FULL RESULTS

Below are the results for the Experiments A through C.

A.1 Models trained on RGB Data Results
In Tables 7 and 8, the results of Experiment A are shown. This
includes which size of the model was used, the used learning rate, and
the corresponding metrics.

Model Size Learning Rate mAP Recall Precision F1
YOLOv5 s 0.0001 0.8 0.772 0.929 0.843
YOLOv5 s 0.001 0.796 0.798 0.916 0.853
YOLOv5 m 0.0001 0.79 0.766 0.92 0.836
YOLOv5 m 0.001 0.786 0.798 0.899 0.845
YOLOv5 l 0.0001 0.785 0.832 0.854 0.843
YOLOv5 l 0.001 0.798 0.742 0.935 0.827

Table 7: Results of training YOLOv5 models with different
parameters

Model Size Learning Rate mAP Recall Precision F1
EfficientDet D0 0.0001 0.708 0.821 0.823 0.822
EfficientDet D0 0.001 0.713 0.784 0.896 0.836
EfficientDet D1 0.0001 0.706 0.775 0.854 0.813
EfficientDet D1 0.001 0.713 0.778 0.894 0.832
EfficientDet D2 0.0001 0.706 0.756 0.876 0.812
EfficientDet D2 0.001 0.712 0.784 0.865 0.823
EfficientDet D3 0.0001 0.706 0.754 0.877 0.811
EfficientDet D3 0.001 0.716 0.774 0.9 0.832
EfficientDet D4 0.0001 0.625 0.719 0.897 0.798
EfficientDet D4 0.001 0.712 0.788 0.871 0.827

Table 8: Results of training EfficientDet models with different
parameters

A.2 Models Trained on Augmented Data Results
In Table 9 and 10, the results of Experiment B are shown. This
includes which size of the model was used, the used learning rate, and
the corresponding metrics. The augmentations used can be found in
Section 4.2.

Model Size Learning Rate mAP Recall Precision F1
YOLOv5 s 0.001 0.791 0.746 0.94 0.832
YOLOv5 s 0.0001 0.795 0.778 0.926 0.846
YOLOv5 m 0.001 0.716 0.666 0.967 0.788
YOLOv5 m 0.0001 0.779 0.764 0.932 0.839
YOLOv5 l 0.001 0.794 0.698 0.953 0.806
YOLOv5 l 0.0001 0.793 0.716 0.95 0.816

Table 9: Results of training the YOLOv5 models on the RGB-D
dataset

Model Size Learning Rate mAP Recall Precision F1
EfficientDet D0 0.001 0.705 0.805 0.856 0.83
EfficientDet D0 0.0001 0.696 0.805 0.845 0.825
EfficientDet D1 0.001 0.697 0.803 0.859 0.83
EfficientDet D1 0.0001 0.61 0.758 0.892 0.82
EfficientDet D2 0.001 0.695 0.807 0.868 0.836
EfficientDet D2 0.0001 0.617 0.739 0.91 0.816
EfficientDet D3 0.001 0.712 0.775 0.896 0.831
EfficientDet D3 0.0001 0.706 0.756 0.9 0.822
EfficientDet D4 0.001 0.611 0.736 0.909 0.814
EfficientDet D4 0.0001 0.62 0.731 0.916 0.813

Table 10: Results of training the YOLOv5 models on the RGB-D
dataset

A.3 Models trained on RGB-D Data Results
In Table 11 and 12, the results of Experiment C are shown. This
includes which size of the model was used, the used learning rate, and
the corresponding metrics.

Model Size Learning Rate mAP Recall Precision F1
YOLOv5 s 0.0001 0.801 0.812 0.931 0.867
YOLOv5 s 0.001 0.801 0.81 0.923 0.863
YOLOv5 m 0.0001 0.801 0.811 0.917 0.861
YOLOv5 m 0.001 0.802 0.766 0.955 0.85
YOLOv5 l 0.0001 0.806 0.741 0.962 0.837
YOLOv5 l 0.001 0.804 0.795 0.939 0.861

Table 11: Results of training the YOLOv5 models on the RGB-D
dataset

Model Size Learning Rate mAP Recall Precision F1
EfficientDet D0 0.0001 0.714 0.803 0.877 0.838
EfficientDet D0 0.001 0.798 0.85 0.859 0.854
EfficientDet D1 0.0001 0.71 0.794 0.849 0.82
EfficientDet D1 0.001 0.8 0.833 0.881 0.856
EfficientDet D2 0.0001 0.713 0.811 0.848 0.829
EfficientDet D2 0.001 0.714 0.819 0.868 0.843
EfficientDet D3 0.0001 0.714 0.753 0.905 0.822
EfficientDet D3 0.001 0.714 0.789 0.908 0.845
EfficientDet D4 0.0001 0.711 0.763 0.891 0.822
EfficientDet D4 0.001 0.714 0.818 0.876 0.846

Table 12: Results of training the YOLOv5 models on the RGB-D
dataset



B EXPERIMENT 4 FULL RESULTS

In Table 13 and 14, the performance results of the models on the
machines are shown. This includes the model used, the inference
time, the standard deviation, and the corresponding metrics. The
name of the models are built as follows: type of model, size, 3 for
RGB and 4 for RGB-D, learning rate, and a for augmented or not.

B.1 Performance on the Jetson Nano
In Table 13 the performance results on the Jetson Nano are shown.

Model Inf. Std Recall Precision AP F1-score
efficientdet0 3 0.001 298 22.32 0.773 0.891 0.712 0.828

efficientdet0 3 0.001 a 300 9.78 0.806 0.848 0.702 0.827
efficientdet0 4 0.001 298 24.77 0.824 0.841 0.789 0.832
efficientdet1 3 0.001 315 21.43 0.756 0.886 0.706 0.816

efficientdet1 3 0.001 a 320 8.04 0.771 0.873 0.699 0.819
efficientdet1 4 0.001 317 11.95 0.824 0.862 0.713 0.842
efficientdet2 3 0.001 370 10.09 0.77 0.853 0.707 0.809

efficientdet2 3 0.001 a 603 11.54 0.768 0.885 0.695 0.823
efficientdet2 4 0.001 342 9.28 0.795 0.849 0.712 0.821
efficientdet3 3 0.001 433 15.46 0.758 0.891 0.71 0.819
efficientdet3 4 0.001 429 12.91 0.768 0.885 0.711 0.823
efficientdet4 3 0.001 552 14.15 0.781 0.844 0.705 0.811
efficientdet4 4 0.001 578 16.07 0.81 0.846 0.707 0.828

yolov5l 3 0.001 723 13.67 0.739 0.936 0.799 0.826
yolov5l 3 0.001 a 862 5.1 0.75 0.941 0.796 0.835
yolov5l 4 0.001 770 10.32 0.795 0.939 0.804 0.861
yolov5m 3 0.001 388 24.84 0.795 0.9 0.787 0.844

yolov5m 3 0.001 a 388 28.24 0.741 0.929 0.788 0.824
yolov5m 4 0.001 393 19.65 0.766 0.955 0.802 0.85
yolov5s 3 0.001 159 1.75 0.797 0.918 0.796 0.854

yolov5s 3 0.001 a 159 4.42 0.724 0.947 0.712 0.821
yolov5s 4 0.001 163 15.7 0.81 0.923 0.801 0.863

Table 13: Results of testing the object models on Jetson Nano on
inference time per image (Std and Inf. in ms)

B.2 Performance on VM-CVDS
In Table 13 the performance results on VM-CVDS are shown.

Model Inf. Std Recall Precision AP F1-score
efficientdet0 3 0.001 24 1.6 0.776 0.892 0.713 0.83

efficientdet0 3 0.001 a 25 6.03 0.809 0.85 0.702 0.829
efficientdet0 4 0.001 24 1.58 0.833 0.84 0.789 0.836
efficientdet1 3 0.001 25 1.34 0.754 0.889 0.706 0.816

efficientdet1 3 0.001 a 26 1.38 0.775 0.871 0.701 0.82
efficientdet1 4 0.001 27 1.44 0.819 0.865 0.713 0.841
efficientdet2 3 0.001 28 1.74 0.768 0.853 0.705 0.808

efficientdet2 3 0.001 a 60 1.74 0.771 0.88 0.694 0.822
efficientdet2 4 0.001 29 1.71 0.795 0.847 0.712 0.82
efficientdet3 3 0.001 31 1.28 0.757 0.898 0.71 0.822
efficientdet3 4 0.001 31 4.76 0.771 0.883 0.707 0.823
efficientdet4 3 0.001 34 1.56 0.783 0.851 0.706 0.815
efficientdet4 4 0.001 35 1.87 0.806 0.847 0.708 0.826

yolov5l 3 0.001 26 0.46 0.742 0.935 0.798 0.827
yolov5l 3 0.001 a 26 0.36 0.753 0.94 0.795 0.836
yolov5l 4 0.001 25 0.45 0.795 0.939 0.804 0.861
yolov5m 3 0.001 13 0.54 0.798 0.899 0.786 0.845

yolov5m 3 0.001 a 13 0.21 0.741 0.927 0.787 0.824
yolov5m 4 0.001 13 0.38 0.766 0.955 0.802 0.85
yolov5s 3 0.001 7 0.26 0.798 0.916 0.796 0.853

yolov5s 3 0.001 a 8 0.34 0.726 0.945 0.712 0.822
yolov5s 4 0.001 8 0.4 0.81 0.923 0.801 0.863

Table 14: Results of testing the object models on VM-CVDS on
inference time per image (Std and Inf. in ms)


