
Original image Brightness change Horizontal flip

Figure 2. From left to right: EfficientDet-D0 and YOLOv5s

• This project is financially supported by Regieorgaan
SIA (part of NWO) under the RAAK PRO projects
Mars4Earth and Focus op Vision

On the scalability of CNNs for apple detection
using RGBD data

● [1] rwightman. Efficientdet (pytorch). [Online]. Available:
https://github.com/rwightman/efficientdet-pytorch

● [2] G. Jocher. Ultralytics (yolov5). [Online]. Available:
https://github.com/ultralytics/yolov5

● [3] J. Gené-Mola and V. Vilaplana – Kfuji RGB-DS Database: Fuji apple multi-modal
images for fruit detection with color, depth, and range-corrected IR data.

Conclusions

Experiments and Results

Experiments and Results

Experiments and Results

Materials and Methods

Introduction

References

Acknowledgements

Koen Molenaar - Bachelor Software Engineering

Supervisors: Maya Aghaei and Willem Dijkstra

• Picking apples can be automated using AI
• We can use CNNs for localizing these objects in an image
• The importance of portable devices becomes present in these tasks
• These devices have insufficiently been researched on the usability for these

tasks

Models: EfficientDet [1] and YOLOv5 [2]
Metrics: precision, recall, F1-score, mean average precision and inference time
Dataset:
• KFuji RGB-DS database [3]

○ 967 images, each 373x548 pixels
○ Includes RGB, Depth and IR intensity data
○ Data collected using Microsoft Kinect V2
○ All 12.839 have been manually annotated

The following experiments have been conducted:
A) Baseline experiment, models trained only on RGB data
B) Augmentations experiment, realistic augmentations are applied. See Figure 3.
C) RGBD experiment, models trained only RGB and depth data
D) Performance testing on the Jetson Nano and VM-CVDS

Winter 2022

Figure 3. A couple examples of our chosen augmentations we used for experiment B.

To summarize the results, we chose to only pick the results of the best model for
each experiment in Table 2.

Experiments Best model F1-score mAP Inf. VM-CVDS Inf. JN (Exp. D)

Experiment A YOLOv5s 0.853 0.796 7ms 159ms

EfficientDet-D0 0.836 0.713 24ms 298ms

Experiment B YOLOv5s 0,846 0,795 8ms 159ms

EfficientDet-D2 0.836 0.695 60ms 603ms

Experiment C YOLOv5s 0,867 0,801 8ms 163ms

EfficientDet-D1 0.856 0.8 27ms 317ms

Table 2. Results of the best performing model for each experiment. Note that the differences in F1-scores are

very small

In Table 1 we can see that the YOLOv5 models take considerably less time than
the EfficientDet models perform inference. We also see that augmentations
(Experiment B) practically do not change the F1-scores in a significant way. Using
the additional depth data however causes an increase in the F1-scores
consistently. When testing the performance on VM-CVDS and Jetson Nano,
YOLOv5 takes half the time of the best EfficientDet models while giving better
predictions. The difference between inference times on the Jetson Nano is often
15x larger than on the VM-CVDS.

● YOLOv5 models gives better predictions than EfficientDet consistently
● Our chosen augmentations did not affect the performance much. The reason is

that these variations were already apparent in the training data.
● Using depth data on top of RGB data consistently gives better predictions.
● The inference time on the Jetson Nano is often 15x larger than on VM-CVDS a

high-end, non-portable machine.

Figure 1. RGB, depth, and IR intensity visualization respectively

In figure 2, the predictions of both EfficientDet-D0 and YOLOv5 models are
shown of the same image.

Computer Name GPU GPU RAM RAM CPU

VM-CVDS GeForce RTX 2070 8 GB 16 GB Intel i9-9760X

Jetson Nano 128-core Maxwell - 4 GB Quad Core A57

Table 1. Hardware specifications

Abstract
Picking apples is a highly repetitive task that can be automated using AI. In these

tasks, the importance of portable devices become present. An example is the Jetson

Nano from Nvidia which is a portable device specifically designed to run neural

networks. When testing models trained on this dataset, the inference time of the best

model was 159ms whereas on VM-CVDS It was 7ms. Due to this large difference, the

usability of the Jetson Nano relies on the maximum inference time allowed to execute

the task effectively.

https://github.com/rwightman/efficientdet-pytorch
https://github.com/ultralytics/yolov5

