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Abstract—This technical paper focuses on creating a failure-safe landing system for BLOVS UAVs, to achieve fully autonomous
drones which comply with the European Union Aviation Safety Agency regulations. This research tackled a specific part of a
larger project, which aims to find a suitable segmentation model which can detect and avoid ground obstacles in the scenario of
an emergency landing performed by an unmanned aerial vehicle. A deep learning approach is used, involving two segmentation
architectures, U-Net and U-Net++, supported by different experiments to improve the performance of these models and in the end
determine the best performing architecture. From the results, was concluded that using a segmentation approach is a suitable method
to apply in this project, although a few limitations must be first settled to test this method in a real-life scenario.
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1 INTRODUCTION

The last few years show a spike in the growth of drone usage thus,
the future of the drones industry looks promising as the usage of
unmanned aircraft expands, from products delivery to agriculture,
building inspections, security, law enforcement, and many more[1].
Yet, unmanned aerial vehicle (UAV) usage has been impeded by strict
lawful measures. However, according to the European Union
Aviation Safety Agency (EASA) as of 31 Dec 2020, the regulations
for civil drones usage were revised in the European Union, thus
allowing more freedom for the use of Beyond Visual Line of Sight
(BVLOS) UAVs for diverse purposes [2]. Even so, the unmanned
aircraft (UA) must comply with strict safety regulations implemented
by the Specific Operations Risk Assessment department (SORA)
which are correlated with the EASA standards[3]. Hence, BVLOS
UA must develop high safety features in case of failure or an
emergency landing to extend those boundaries and be able to achieve
commercial use at a large scale.

The current issue is that there is no reliable and fully accurate
autonomous fail-safe landing system for unmanned aircraft operating
beyond the visual line of flight. Thus, the ’Towards the first and Best
EU approved Autonomous Security drone for BVLOS flighT ‘ (The
BEAST) project emerged as a collaboration between Saxion
University and NHL Stenden University of Applied Sciences, to
create a reliable fail-safe landing system for drones. The main goal of
this project is to detect and avoid hazardous impediments on the
ground which might interfere with a safe landing maneuver
performed by the BVLOS, thus achieving a successful touchdown
without producing any harm to the environment or the aircraft.

A UAV can be flown in three different scenarios regarding the
pilot’s line of sight, the flight that occurs at the visual line of sight
(VLOS) imply that the pilot maintains continuous independent visual
contact with the UA, thus allowing different safety and avoidance
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maneuvers to be performed within the visual line. Secondly, the
extended visual line of sight (EVLOS) requires the remote pilot to be
assisted by a trained observer who must always have a good visual of
the drone and communicate essential flight information to the pilot.
Lastly, the beyond visual line of sight (BVLOS) drones are operated
by the pilot without retaining a visual line of sight upon the aircraft at
all times, thus the only visual available is the bird’s eye view provided
by the drone’s camera. [4] Hence, the UA is deprived of the hands-on
ability of the pilot to detect and avoid obstacles, such a system must
be developed to aid the drone along its trajectory. However, this
implementation must be light enough to go onboard a UAV. This
implementation should also consider computation speed and fast
response which are important for this task as each second is crucial
when performing a fail-safe landing and object avoidance at the same
time, luckily achieving those standards has been facilitated by the
evolution of deep learning in recent years. Although the final goal of
The BEAST project is to achieve state-of-the-art performance in all
these categories, this specific paper is focused on implementing an
algorithm to detect and avoid ground obstacles in the scenario of an
emergency landing, while minimizing the risks of crashing and
inflicting damage. As the other study done on this project used an
object detection approach to solve the issue, for this implementation
we decided to make use of a segmentation approach, to predict the
outliers in a specific area and assess if it is suitable to perform a safe
landing maneuver. Thus, from the Aeroscapes dataset [5], the twelve
classes were divided in two, as follows. The safe class contains
vegetation and roads, while the unsafe class contains everything else,
such as constructions, people, obstacles, cars. See Section 3.1.

This research paper will address the implementation of
segmentation using two architectures known to yield high results,
U-Net [6] and U-Net++ [7], for fail-safe landing in drones operating
BVLOS by answering the research question: How can semantic
segmentation be implemented in the failure-safe landing system of
Unmanned Aerial Vehicles?
To help solve the above statement three research questions were
derived:

• How suitable is the segmentation approach in implementing the
fail-safe landing system in UAVs?

• How does a different segmentation algorithm compare with the
baseline U-Net architecture?

• Which hyperparameters have the most impact on the
performance of the segmentation model?



2 STATE OF THE ART

Recent studies have shown different approaches to solving fail-safe
landings. In their paper from 2018, Rabah et al. [8], used image
processing to solve the problem. After they converted the image
received from the drone video footage from RGB to HSV format,
they apply a threshold resulting in a binary image. Afterward,
morphology transformers are used on the output image to get rid of
any noise in it. Finally, to calculate the centroid of the image, 1st
order spatial moments around the x-axis, y-axis, and the 0th order
central moments of the binary image are calculated. 0th order central
moments of the binary image represent the pixels in the image where
the binary value is equal to 1.

More recently, Esteban et al. [9], starts with applying the transfer
learning technique to another model. This way, one can use the
weights of a previously trained model as a starting point, instead of
randomly initializing them. This usually gives a better training
process since the previous model already learned to extract important
features from the samples. Although the data he used was
representable, it lacked in size. To solve this problem, the author
decided to use data augmentation to improve the performance of the
model. Choosing eight augmentation techniques from the
Albumentations library [10], resulted in different images to train the
model with. In the current state, this study might not be ready for
real-life applications yet, but it is the first step towards a fail-safe
landing mechanism.

In their paper from 2021, Guérin et al. [11], use semantic
segmentation to identify landing zones and Bayesian neural network
theory to monitor the predictions of the emergency landing system at
runtime. Here the authors aim at building a semantic segmentation
model able to determine if a given pixel is part of a busy road or not.
To do this, a model called Multi-Scale-Dilation net (MSDnet)
proposed in [12], is used. Then, the emergency landing system can
use the predicted segmentation to identify a suitable landing spot.

Among other studies on autonomous UAV landing systems, Lee et
al. [13], made use of optical flow. The study describes the two
modules installed in the fail-safe landing system, the optical flow
magnitude map generator, and obstacle analyzer. The optical flow
magnitude map generator calculates optical flows between the input
images obtained from the camera. An obstacle analyzer does, as the
name implies, determine the existence of obstacles. From the optical
flow magnitude map, two criteria can be acquired: the magnitude of
the optical flow, and the feature point. With these criteria, an obstacle
can be determined by the magnitude. If an obstacle exists, the
magnitude is larger than normal, and the closer it is, the larger it
becomes. In addition, an image that includes an obstacle generates
more feature points than a flat image.

3 MATERIALS AND METHODS

This section will further detail the materials used throughout the
project and explain the methods involved in this paper, from the
experiments and the fine-tuning of the hyperparameters to the results
of the models used.

3.1 Dataset
This project is using a public shared dataset, named Aeroscapes [5].

The aerial dataset comprises 3269 RGB images, captured by a
commercial drone from an altitude range of 5 to 50 meters. The
pictures have a resolution of 720px by 1280px, are semantically
segmented, and divided into 12 classes, from which the respective
ground-truth masks are provided [5]. For this project, the classes will
be combined in the classes ’safe’ and ’unsafe’. The classes amount is
not decisive, since the purpose of this project is to identify safe
landing spots, and the model does not have to distinguish the
difference between a person or a car.

Moreover, the dataset consists of a folder that contains the
visualization for each image and another one with the text file names
of the training and validation splits for data. To better process the data
and feed the model, the images were separated into 3 portions, 60%
representing the amount allocated for training the architecture, which

makes up 1962 pictures of the total, 653 samples signifying 20%,
were assigned for validating the model, while another 20% were
reserved for testing the architecture.

Lastly, while doing the research and data exploration, two other
datasets were determined to be relevant for this project, the first one
being UAVid which contains 300 high-resolution images extracted
from 30 video sequences recorded in 4k [12]. The second dataset is
the Semantic Drone dataset cumulating a total of 400 images with a
resolution of 6000 by 4000px [14]. Those two datasets are fairly
different in comparison with Aeroscapes, by having the majority of
the pictures taken in densely populated urban areas including busy
roads and buildings. Moreover, the image resolution is different in all
three of them as well as the segmentation classes. Thus, Aeroscapes
being the larger of the three, also includes a higher percentage of
pictures containing vegetation and free roads which are the main
focus for our model prediction, making this dataset the most suitable
one for the given project. However, the Semantic Drone dataset is
still being used in the experiments part to measure how well the
algorithm performs on out of dataset images.

Fig. 1: Aeroscapes Dataset with combined ground truths

3.2 Model architectures
As mentioned earlier, we opt for solving the previously presented
research questions using an image segmentation pipeline, and the
integrated U-Net architecture [6]. The U-Net model used in this
project is composed of 64 start filters, 5 depth layers, and a latent
vector of size 1024. The architecture uses a 3x3 convolution, a 2x2
max pooling layer with a kernel size of 3, used for downsampling and
stride 2, and a final layer of a 1x1 convolution used to assign each of
the 64 component vectors to the desired number of classes [15].

The second architecture is U-Net++ and as its creators mention
this algorithm is supposed to be a ’more powerful architecture for
image segmentation’ [7]. Published in 2018, U-Net++ had a few key
differences compared to its predecessor U-Net, as it uses redesigned
skip pathways, which help to bridge the prior existing gap between
the encoder and decoder sub-networks. Moreover, the U-Net++
architecture is pre-trained on imagenet and contains dense skip
connections and deep supervision which improve the segmentation
accuracy and the gradient flow while enabling the model to be easily
adjustable to find the optimal balance between inference time and
performance [7].

Moreover, not only the dataset was tailored to fit the needs of this
research, but the segmentation implementation also had to be
modified to ensure optimal performance of the model. Thus, the data
loader was adapted to the given dataset, and the training runtime of
the model was decreased by 35% to boost the operation’s speed. This
boost was achieved by experimenting with changing different
hyper-parameters and finding a suitable number of workers for the
dataloader. The parameters which contributed the most to the
outcome were the number of workers, the batch size, and the number
of tiles, see Section 3.3.



Furthermore, the option to add data augmentations was
implemented with the use of the python library named
Albumentations [16] to test the impact on the model’s performance.
As the library offers a wide variety of transforms, for this research
only a handful of relevant augmentations were applied, as their
relevancy was determined considering the given scenario of detecting
the safe landing zones, for a BVLOS UAV, using semantic
segmentation. In the next part, the transforms which yielded the best
result will be analyzed and explained, see Section 4.4.

3.3 Tiling
Due to the restricted amount of available computing power, we

decided to use a method called tiling to split the image into smaller
images. This way the model will not lose any data. In addition, tiling
can help improve the output of the model.

There are 3 compelling methods of tiling: fixed tiling, random
tiling, and positive tiling. Given an image with the implementation of
fixed tiling, this image will be split in x amount of tiles. These tiles
will have a fixed position that stays the same for each image. See
Figure 2. Random tiling is a variation of tiling that gets tiles from an
image at a random position. This position will then change for each
image. Indeed the results from random tiling will not be favorable
since many tiles will not contain a target (the car in this example).
Positive tiling however, expands on this method and makes sure that
the random tiles that are generator are certain to contain a target. In
our case, positive tiling could result in a better pixel distribution
between the classes. However, positive tiling may result in
unrepresentative data as the Aeroscapes dataset contains some images
without the unsafe class. Moreover, due to the limited hardware
resources, we decided to only include fixed-, and random tiling in our
experiments

Fig. 2: The procedure of fixed tiling (Red), random tiling (Green),
and positive tiling (Blue).

3.4 Hardware and Software
Table 1 shows the hardware specifications of the virtual machine that

is used during this project.

Hardware Specifications
CPU 8 Cores @ 2.4GHz
CPU Memory / RAM 29.2GB
GPU Model Nvidia GeForce RTX 2070 Super
GPU Memory 8 GB
CUDA Version 11.0

Table 1: Hardware specifications of the virtual machine

The programming language Python is used throughout the project.
With the software comes multiple packages, which the most
outstanding being:

• Pytorch [17]

• Albumentations [16]

3.5 Evaluation Metrics
To determine the validity of the model’s predictions, the following will
present the evaluation metrics implemented in the testing part.

3.5.1 Intersection Over Union (IoU)
Being one of the most used and relevant metrics regarding
segmentation tasks, the intersection over union, also known as the
Jaccard Index, represents the area between the predicted output
segmentation and the ground truth, divided by the area of union
between the outputted segmentation and the ground truth. The ratio
ranges from 0 to 1, where 0 is signifying that there is no relationship
between the prediction and the ground truth, and 1 represents a
perfect overlapping segmentation, see F 3).

Fig. 3: IoU

3.5.2 Precision and recall
As seen in Figure 4, the precision is calculated by dividing the true
positives by the true positives + the false positives and is defined as
the ratio of accurately predicted positive observations to the total
predicted positive observations. Thus, a high score relates to a lower
false-positive ratio. The recall is calculated similarly to the precision
metric, the true positives are divided by the true positives + false
negatives and it is defined as the rate of correctly predicted positive
observations to all observations in the given class. Both metrics are
using a range between 0 and 1, as a rule of thumb the higher the score
the better is the model.

Fig. 4: Precision & Recall.

3.5.3 F1 score
The F1 score represents the weighted average of precision and recall
and it takes into consideration both false positives and false negatives
from an operation and is calculated as shown in Figure 5. The F1 score
shows the output of the unsafe class predicted by the model, meaning
it is class-dependent.

Fig. 5: The formula of the F1 score.

4 EXPERIMENTS & RESULTS

The experiments are categorized to ensure an efficient experiments
layout. The different parts of experiments then contain experiments
that are focused on the same parameters. For the first set of the
experiments, an ensemble of fixed parameters that last throughout all
the parts until they encounter their matching part is chosen. The best



parameter that is determined by the experiments is used for future
experiments. The dataset used in these experiments is the AeroScapes
dataset [5].

For each experiment, the metrics IoU, F1-Score, Recall, and
Precision are noted. These metrics are used to decide which model
performs better, and thus which parameters are being used for future
experiments. The unsafe class can be seen as the positive class in
these experiment metrics.

Because some experiments may perform better over a longer
period, the experiments are run for a high number of epochs to ensure
that the model has enough time to learn. The model is automatically
stopped early to prevent overfitting. This method is fine-tuned to
ensure that the model can push to its best possible state, yet it saves
time by stopping the training when the model starts overfitting. When
the model was stopped early, the procedure stays the same, and the
model start testing.

4.1 Tiling

The first two experiments are designed to answer the question:
”Does tiling improve the output of the model?”. Without tiling, the
input images need to be downscaled to fit the model due to a lack of
hardware memory. With tiling, this is not the case, since the images
are being separated into smaller chunks that can fit the model. Table 2
shows the first set of experiments, based on fixed tiling. In these
experiments, a total of 4 tiles with a height of 360px and a width of
640px is used. In the first experiment, no tiling is applied and the
images are being downscaled to fit the model. The second experiment
uses fixed tiling with a tile size of 360px by 640px. In experiment 3,
random tiling is applied in comparison to experiment 2 where fixed
tiling was used. Positive tiling is not applied, since positive tiling is
based on a single class, while we are interested in both classes, see
Section 3.3. Random tiling is applied to both the training and
validation set. The test set remains untouched.

Tiling Experiments
Exp Model LR Optimizer Tiling Method

1 U-Net 1e-3 Adam None
2 U-Net 1e-3 Adam Fixed Tiling
3 U-Net 1e-3 Adam Random Tiling

Table 2: The first set of experiments, based on tiling.

The results of these three experiments show the impact that tiling
can have. Although the model had to train for longer with fixed tiling
compared to no tiling, the results improved. The IoU improved by
approximately 0.25 see Table 3. From Table 3 we can also conclude
that the F1-Score more than doubled when using fixed tiling. The
precision increase by 0.063 and the recall increased by almost 0.4.
This table also shows a distinct difference between the fixed tiling and
random tiling results. The F1-Score, recall, and precision scored lower
than with fixed tiling. This is probably due to an unrepresentative and
unstable dataset caused by random tiling.

Figure 7 shows the model’s output of the first experiment, where no
tiling is applied. The legend of this image is shown in Figure 6. From
both, the figures Figure 7 and Figure 8 we can see that the model has
improved on detecting contours, and filling in objects.

Tiling Results
Exp IoU F1-Score Precision Recall

1 0.297 0.338 0.742 0.219
2 0.548 0.689 0.805 0.603
3 0.311 0.331 0.622 0.225

Table 3: The results of the first set of experiments, based on tiling.

Fig. 6: Legend

Fig. 7: Experiment 1 - No tiling applied
From left to right: input image, ground truth, and model output

Fig. 8: Experiment 2 - Fixed tiling applied
From left to right: input image, ground truth, and model output

Fig. 9: Experiment 3 - Random tiling applied
From left to right: input image, ground truth, and model output

From both Table 3 and Figures 7, 8, and 9 we can conclude that the
output of the model significantly decreases when applying random
tiling. With random tiling, the model has a harder time detecting
unsafe objects. Hence we continue to use fixed tiling throughout the
remaining experiments

4.2 Optimizers
A vital part of getting the best model is choosing an optimizer. In

experiments 4 to 7, we take a look at the effect of several optimizers.
The optimizers Adam, Adamax, AdamW, SGD, and ASGD were
chosen as these seemed most suitable for this project. Table 4 shows
the third set of experiments, with various optimizers.

As shown in Table 5, AdamW gave similar results to Adam, while
Adamax significantly improved the model compared to Adam. The
IoU improved 0.2149 compared to the baseline Adam experiment.
Two completely different types of optimizers were also used in this
set of the experiments. The SGD optimizer implements stochastic
gradient descent, where the ASGD optimizer stands for the averaged
stochastic gradient descent. The results found in Table 5 show a
significant drop in performance in the ASGD optimizer compared to
the Adam optimizer. From the results shown in Table 5 and Figure 10
we can conclude that Adamax is the best performing optimizer for
this project and hence will be used for the remaining experiments.

Fig. 10: Experiment 4 - Adamax Optimizer

4.3 Learning rate
With the learning rate fixed at 1e-3 for the previous experiments, we

decided to experiment with a few lower learning rates to decrease the
spiking in the validation loss which was encountered before. This
leaves us with experiments 8 and 9, with a corresponding learning



Optimizer Experiments
Exp Model LR Optimizer Tiling Method
- 2 - U-Net 1e-3 Adam Fixed Tiling

4 U-Net 1e-3 Adamax Fixed Tiling
5 U-Net 1e-3 AdamW Fixed Tiling
6 U-Net 1e-3 SGD Fixed Tiling
7 U-Net 1e-3 ASGD Fixed Tiling

Table 4: The third set of experiments, with various optimizers.1

Optimizer Results
Exp IoU F1-Score Precision Recall
-2- 0.548 0.689 0.805 0.603
4 0.763 0.880 0.922 0.842
5 0.542 0.683 0.801 0.596
6 0.522 0.672 0.785 0.543
7 0.220 0.213 0.384 0.147

Table 5: The results of the third set of experiments, with various
optimizers.1

rate of 1e-4 and 1e-5, see Table 6. Although only 3 generic learning
rates were chosen, the aim is to find a more precise learning rate in a
future experiment.

Learning Rate Experiments
Exp Model LR Optimizer Tiling Method
- 4 - U-Net 1e-3 Adamax Fixed Tiling

8 U-Net 1e-4 Adamax Fixed Tiling
9 U-Net 1e-5 Adamax Fixed Tiling

Table 6: The fourth set of experiments, with various learning rates. 1

Table 7 shows the results found from experiments 8 and 9. A
learning rate of 1e-3 was used as a baseline. The results from those
three different learning rates do not differ that much from each other.
This difference can also be seen as noise. Although experiment 9
with a learning rate of 1e-5 shows a small improvement in IoU and
F1-Score we decided to use experiment 8 with a learning rate of 1e-4
for further experiments since this model’s image output showed
qualitatively better results than a learning rate of 1e-5, see Figure 11
and Figure 12. Therefore a learning rate of 1e-4 is used for further
experiments.1

Learning Rate Results
Exp IoU F1-Score Precision Recall
- 4 - 0.763 0.880 0.922 0.842

8 0.764 0.877 0.833 0.828
9 0.768 0.896 0.910 0.883

Table 7: The results of the fourth set of experiments, with various
learning rates.1

1 ’- -’ indicates the best previous experiment which is used as a baseline
for the current set of experiments.

Fig. 11: Experiment 8 - Learning Rate of 1e-4

Fig. 12: Experiment 9 - Learning Rate of 1e-5

4.4 Data Augmentations

The next set of the experiments focuses on data augmentations and
their impact on the model’s performance, as mentioned in Section
3.2. Thus, from all the transforms available in the Albumentations
library, six of them were determined to be the most relevant for the
experiments of this project [9]. Hence, the optimizer and learning rate
which had the better performance in the previous experiments were
kept for this one, and gamma, blur, horizontal flip, vertical flip, rain,
and fog were tested.
Moreover, after getting the best performing data augmentation, an
additional experiment (experiment 16) was done by combining those
transforms, to see if the model can improve further. Table 8 shows the
fifth set of experiments, with various data augmentations.

Data Augmentation Experiments
Exp Model LR Optimizer Augmentation(s)
- 8 - U-Net 1e-4 Adamax None
10 U-Net 1e-4 Adamax Gamma
11 U-Net 1e-4 Adamax Blur
12 U-Net 1e-4 Adamax Horizontal Flip
13 U-Net 1e-4 Adamax Vertical Flip
14 U-Net 1e-4 Adamax Rain
15 U-Net 1e-4 Adamax Fog
16 U-Net 1e-4 Adamax Combination

Table 8: The fifth set of experiments, with various data
augmentations.1

From the results represented in Table 9 we can see that all the data
augmentations besides blur managed to improve the models IoU with
approximately 0.02 to 0.03. For the combination of the data
augmentations, we can see that the model’s output improved even
further with approximately 0.01 to 0.02 compared to the separate data
augmentations.

Fig. 13: Experiment 16 - Combination of Augmentations

Figure 13 shows the output of the last and best performing U-Net
model. With the IoU being just over 0.8 this model is considered to be
a reliable one in predicting the ground truth of the given dataset. The
output shows that the model can clearly distinguish objects from the
environment.



Data Augmentation Results
Exp IoU F1-Score Precision Recall
- 8 - 0.764 0.877 0.933 0.828
10 0.794 0.911 0.946 0.878
11 0.763 0.896 0.910 0.882
12 0.797 0.921 0.925 0.918
13 0.789 0.908 0.917 0.900
14 0.792 0.911 0.931 0.892
15 0.774 0.892 0.940 0.848
16 0.809 0.927 0.936 0.919

Table 9: The results of the fifth set of experiments, with various data
augmentations.1

4.5 Model Architectures
The above experiments were realized by using the U-Net architecture
presented in Section 3.2. Although to answer the second research
question of this paper, we decided to use one more segmentation
architecture, U-Net++ Section 3.2. Thus, to compare the two
architectures, only the most impactful experiments from U-Net were
recreated, using mostly the same parameters to achieve a truthful
comparison, as seen in Table 10. The only parameter changed was the
size of the tiles, from 360px by 640px to 352px by 640px in order to
fit the convolution requirements of the U-Net++ model. Moreover, in
S 4.1 it can be seen that tiling drastically improves the model’s
performance, thus for U-Net++ this parameter was used by default, so
no additional testing is necessary.

Model Architecture Experiments
Exp Model LR Optimizer Augmentation(s)
17 U-Net++ 1e-3 Adam None
18 U-Net++ 1e-3 Adamax None
19 U-Net++ 1e-3 SGD None
20 U-Net++ 1e-4 Adamax None
21 U-Net++ 1e-5 Adamax None
22 U-Net++ 1e-4 Adamax Combination

Table 10: The sixth set of experiments, with U-Net++.2

Model Architecture Results
Exp IoU F1-Score Precision Recall
17 0.318 0.341 0.783 0.218
18 0.677 0.784 0.866 0.716
19 0.542 0.711 0.850 0.612
20 0.727 0.869 0.910 0.831
21 0.566 0.759 0.819 0.707
22 0.665 0.814 0.876 0.760

Table 11: The results of the sixth set of experiments, with U-Net++.3

Fig. 14: Experiment 20 - The best model output

From the results seen in Table 11 it can be observed that throughout
the experiments, U-Net++ performed worse than U-Net, even with the

augmentations applied and using the best optimizer. This might be
due to the large structure of the U-Net++ architecture which achieved
its pick model early in the training. Even though the model output
image seems to match the ground truth quite well, it can be seen that
it had difficulties in correctly predicting the edges of the unsafe class,
yielding some false negatives and false positives.

5 DISCUSSION, CONCLUSION & FUTURE WORK

This part describes the discussion, based on the research questions and
aims to answer the problem statement. The conclusions derived from
the results will be detailed and further work will be proposed.

5.1 Discussion
When analyzing the results of the experiments it can be observed that
the U-Net architecture yields the highest metrics when augmentations
are applied. The IoU has a score of 0.8094, an F1 score of 0.927, and a
recall of 0.919, it can be concluded that using a segmentation approach
is appropriate when implementing the fail-safe landing system in a
UAV.

To answer the research question ’How does a different
segmentation algorithm compare with the baseline U-Net
architecture?’, the results of the experiments conducted in Section 4.5
will be detailed. As shown in tables Table 10 and Table 11, when
choosing the most suitable optimizer for both segmentation
architectures, it can be concluded that Adamax yielded the best
metrics. Although, U-Net++ did not outperform U-Net, achieving
only an F1 score of 0.866, IoU being 0.6779 and recall of 0.831,
when the F1 score for U-Net was 0.880, IoU of 0.7638, and recall
score of 0.842. As for the learning rate, both models performed better
when using 1e-4, even though U-Net++ presented a higher
discrepancy between the metrics achieved from the three different
learning rates, compared to U-Net there the scores were somehow
similar. For the best learning rate, U-Net++ achieved better results in
terms of precision and recall, scoring 0.910 and 0.831, but performed
slightly poorly in terms of IoU and F1-Score. Thus, comparing the
results of both architectures, it can be concluded that U-Net++ did not
outperform U-Net in this project. This might be due to several
factors, such as the large structure of the U-Net++ architecture, the
relatively short dataset, and the tuning done to the model which was
less for U-Net++ compared with U-Net.

As for the third research question, ”Which hyperparameters have
the most impact on the performance of the segmentation model?”, it
can be observed that the improvement for U-Net architecture is
exponential from the first experiment Table 4.1 to the last Table 4.4.
The first set of experiments in Table 4.1 concludes that using tiling
was far more lucrative in this situation and yielded better results than
the alternative of not using tiling. Section 4.1 compared the use of a
function that let the model pick random tiles. The final output
showcased that by not using random tiles the model performs better.
The third set of experiments in Table 4.2 compares five different
optimizers. While the worst performing one is ASGD with the
metrics being lower than what the model achieved without tiling
implemented. The next three optimizers, Adam, AdamW, and SGD
perform somehow similarly with a low difference margin regarding
their test metrics, While Adamax yields outstanding results in
comparison with the rest. The model achieved an IoU of 0.763 and an
F1-Score of 0.880. The next set of experiments tests the difference
between three different learning rates Table 4.3. As the results part
presents, the difference in the metrics is extremely slim, thus the
learning rate of 1e-4 was chosen for the remaining experiments. The
last set of the experiments tested the use of different augmentations
from the Albumentations library. After testing, the findings
concluded that augmenting the dataset did indeed help improve the
model’s outcome. The best performing augmentations were gamma
which achieved the highest precision of 0.94, horizontal flip with the
highest F1 score of 0.921, IoU of 0.797, and recall of 0.91, vertical
flip, having metrics slightly lower than the prior two, and lastly, rain
which had close results as gamma and horizontal flip. Moreover, the
best performing augmentations were combined and the U-Net model



managed to achieve the highest metrics, outputting an IoU score of
0.809 and an F1-Score of 0.927. These being mentioned, it can be
concluded that starting from a basic implementation of U-Net, the
most impactful hyper-parameters are the use of tiling, the use of an
adequate optimizer, and the usage of augmentations.

In terms of the bottlenecks encountered in the process of writing
this research, the dataset is the principal one. Namely, the unbalance
found among the images, as some classes occur more frequently than
others. In terms of total pixels amount, was observed that from the
classes belonging to the unsafe landing areas, the classes of animals,
bikes, and constructions, occurred significantly less than the ones of
cars, people, or obstacles. This might interfere with how the U-Net
model is performing. Thus, for further studies, this might be a valuable
point to consider, when choosing the dataset.

5.2 Conclusion
The results aim to answer the problem statement of this research,
which looks for ways in which semantic segmentation can be
implemented in failure-safe landing systems for BVLOS UAVs. Even
though no real-time tests were performed, from analyzing the metrics
and visual outputs of Section 4, it can be conceded that the U-Net
model achieved positive results and it is worth trying it in a real-life
situation, under close supervision.

As this is one of the few pieces of research targeting this specific
subject and making use of a semantic segmentation model, the project
might serve as a comparison point for further research. The findings
of this paper contribute to the ultimate goal of creating a failure-safe
landing system accepted by EASA, by showing that using a
segmentation approach is suitable for this situation and the use of
augmented images can replicate real-life scenarios in which a
BLOVS UAV can encounter.

Moreover, in the current stage, the project includes a fully
functional implementation of the two segmentation architectures, that
comes with an aerial dataset of drone imagery, the implementation of
tiling, which can be toggled on and off. Also, the code supports the
use of the Albumentations library and many other hyper-parameters,
which upcoming researchers can experiment with. The last
contribution of this project is that it determined the best performing
optimizer to be Adamax with a learning rate of 1e-4 and it showcased
the most suitable augmentations to use on aerial imagery, parameters
which can represent a starting point for further research.

5.3 Future Work
This project aims to inspire further research, thus a few suggestions
will be made. Starting with the dataset, the next step is to gather more
imagery data to balance the Aeroscapes dataset and achieve an even
distribution of the twelve classes. Furthermore, other researchers
might want to use an F or F3 score when outputting the metrics and
test the best-performing model again, as the focus will lie upon the
unsafe class which is the more interesting one when predicting a safe
landing zone. Also, a thorough recall comparison will be interesting
to be seen, with the focus shifted from a pixel perspective to an
objective comparison. Another piece of advice is to make use of the
learning rate scheduler, as this project was decided not to use it, to
avoid having a larger experiments list, thus future experiments might
yield different results. Additionally, another state-of-the-art
segmentation architecture can be implemented and different learning
rates can be used and also positive tiling can be implemented. Lastly,
integrating this approach into a BLOVS UAV and testing it in
real-time will represent an important next step and additionally, the
segmentation approach can be compared with the object detection
one.
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A EXPERIMENT 23 - METRICS

The last experiment of this research can be seen in Table 12 and it
reflects the results obtained by U-Net architecture on out of our dataset
images. The experiment uses the Semantics Segmentation dataset to
assess the architecture’s performance on a different set of images. As
the dataset was used only in the testing function, it can be seen that the
metrics are lower than the one obtained by U-Net on the Aeroscapes
dataset.

Performance of best model on different datasets
Exp Model Dataset IoU F1-Score Precision Recall
16 U-Net AeroScapes 0.8094 0.927 0.936 0.919
23 U-Net Semantic Drone Dataset 0.2943 0.471 0.516 0.487

Table 12: The result & comparison of the final experiment with
U-Net.3.2

B EXPERIMENT 23 - IMAGE

Fig. 15: Experiment 23 - Semantic Drone Dataset
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