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Abstract— In this paper, Multi-Scale and Single-Scale architectures were evaluated to improve the classification of aphids among
other insects. Early aphid identification is necessary to determine whether the presence of aphids impacts the effectiveness of
pesticides. The objective is to prevent the crop (particularly seed potatoes in this study) from being contaminated with viruses
transmitted by aphids. In order to classify our dataset, three distinct deep-learning models (ResNet, Vision Transformers, and
Cross-Attention Multi-Scale Transformers) are evaluated. In addition to the difference in scale, two designs were included:
Convolutional Neural Networks and Vision Transformers. The collected dataset used during this study contains photos of aphids and
other insects. Since the difference between aphids and non-aphids is negligible, the annotations were enhanced multiple times by
cleaning the data in cooperation with domain experts. Prior to the comparison, grid searches are performed on all selected models
to identify the optimal parameters. The Cross-Attention Multi-Scale Vision Transformer, which is based on the Vision Transformer
but expanded to a Multi-Scale architecture, achieved the greatest F1-score on aphids (84.88 percent) and lowest standard deviation
among multiple experiments (1.06 percent). The Multi-Scale method demonstrates applicable performance for classifying aphids.
Several recommendations are made to further improve classification performance.

Index Terms—classification, aphids, insects, Vision Transformers, ViT, Cross-ViT

1 INTRODUCTION

The Netherlands has a large agricultural sector. In 2020, this sector
accounted for about 18 percent of exported goods [1]. Among these
exported goods are potatoes, with the majority of them being seed
potatoes [2]. An export seed potato starts its growth in Dutch soil.
Planting selected potatoes yield seed potatoes, which are then run
through this process again. When the seed potato reaches a certain
biological specification, it can be grown into a potato for
consumption. The final process can take place in another country
where the potato is imported. This process produces consumption
potatoes, which are used to feed both people and animals. Once the
seed potato has been planted abroad, problems may occur if the initial
growing process in the Netherlands was disrupted. As a result, a
portion of the world’s food supply is reliant on the conditions present
when seed potatoes are in their early stages of growth.

The main threat to the seed potato during its growth is to be
infected with a virus [3]. The transmission of the virus in a seed
potato batch starts to show up weeks after the potato has been
harvested and stored. Before exportation to other nations, a
third-party organization examines seed potatoes for possible
infections. Only a few samples from a batch are tested for infections
because it is not feasible to examine all seed potatoes. All samples in
a batch are rejected and consequently downgraded if a predetermined
number of them are found to be infected. A rejected batch is a major
setback because energy and money was invested in the seed potato
growing process before the inspection can take place.

To reduce the number of infected potatoes, virus spread has to be
minimized. The viruses found on potatoes are mainly spread by aphids
[4]. These tiny insects transmit viruses through plants. Given that
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aphids can fly, crops can become infected rapidly. Early detection
allows for timely pest management. Using pesticides to control pests is
becoming increasingly difficult as pesticides become less effective due
to regulations. Regulations are supposed to protect the environment
and biodiversity. The available resources must therefore be used more
efficiently, therefore preventive use is no longer suitable [5].

Pest control seems most effective if pesticides are used on plants
where aphids are present. It is necessary to accurately detect the
presence of aphids on the crops in order to research if applying
pesticides at the right moment will improve the extermination process
of aphids. Currently, the detection of aphids is done by placing
yellow sticky plates next to the field’s crops. Aphids are drawn to the
yellow color, which causes them to land on the plate and stick to it.
The plates will be disassembled at specific times for analysis.
Analysis of the plates is difficult due to other stuck insects on the
plate and the fact that humans are currently responsible for counting
the aphids on the sticky plates. Due to the fact that aphids are tiny and
challenging to see with the naked eye, inspection is time-consuming
and accuracy depends on the inspector. Using a system based on
computer vision, the preceding procedure could be automated. Such a
system could also reduce the time between detecting the presence of
aphids and initiating pest control, increasing the effectiveness of the
procedure.

Personnel for the agriculture industry is currently difficult to find
[6]. If automatic checks for the presence of aphids are possible, pest
control could be applied more quickly. As a consequence, fewer
personnel will be required to inspect for aphids’ presence and plants
infected with diseases [3]. In addition, the laborious procedure for
determining the presence of aphids should be automated.

Our research investigates the classification performance of
separating aphids from other possibly present insects in the field. As
a result, the distinction between aphids and non-aphids is the main
focus of this work. Since recent Vision Transformers (ViT)-based
architectures show promising performance on classification problems
[7], these are evaluated in our research. Due to the big variation in
insect size and thus image size, the Multi-Scale approach appears to
be a suitable fit for classifying aphids. Whereas the Convolutional
Neural Networks (CNN) and ViT models are both single-scale
structures, the Cross-Attention Multi-Scale Vision Transformer
(Cross-ViT) [8] model is used to evaluate the Multi-Scale effect.



These aspects are covered in the following main research question:
Do Multi-Scale feature representations with Vision Transformers
improve classification performance to discern aphids from
non-aphids?

• What is the classification performance of a conventional CNN
architecture?

• What is the classification performance of a single-scale ViT
architecture? Does it outperform the single-scale CNN
baseline?

• Can a Multi-Scale ViT architecture outperform a single-scale ViT
architecture?

2 STATE OF THE ART

The first part begins with a brief description of aphid detection
before diving into the state-of-the-art computer vision techniques.
Similar studies, such as [9] and [10], are discussed in the second part,
which explains the practical implications of these studies in detail.
The third part describes the Convolutional Neural Network (CNN)
architectures, which are chosen as a baseline. This architecture has
primarily been used in studies such as [11] for classification and
detection.

The second part describes the Convolutional Neural Network
(CNN) architectures, which are chosen as a baseline. This
architecture has primarily been used in studies such as [11] for
classification and detection.

The Vision Transformers (ViT) architectures are described in the
last part [7]. Cross-Attention Multi-Scale Vision Transformers
(Cross-ViT) [8] introduce a Multi-Scale approach to enhance the
performance of this architecture. Using this architecture, the
Multi-Scale aspect is compared.

2.1 Insect detection
There are numerous approaches to the detection of insects.

Additionally, the most interconnected research was conducted on the
detection of aphids. Aphids are primarily found on crops, as this is
where the problem originates. In [12], an attempt is made to directly
detect aphids on wheat crops. We use a yellow sticky plate as a
background in our work because potato plants do not provide a
consistent capturing scene. Since detection of aphids is rare, research
is also conducted on insect detection using computer vision. Since
sticky yellow plates are also utilized in [9]. Due to their setup’s
location in a greenhouse, however, the number of insect species is
limited to two. These species, namely thrips and white-flies, are
easily distinguishable to the human eye.

2.2 Classification with CNN
In [11], classification performance on images with insects is

evaluated by using pre-trained models such as AlexNet, ResNet-50,
ResNet-101, VGG-16, and VGG-19. These models are trained,
validated, and tested on three insect datasets: NBAIR [13], Xie1 [14],
and Xie2 [15]. The layout of the models and hyperparameters is
optimized to achieve a maximum classification accuracy of around 96
percent. This result could be found because pre-processing steps, like
Canny Edge Detection, are made. In addition, augmentations, such as
scaling and transposing, are made to enhance the model’s
performance. The pre-processing and augmentations could be
valuable for our research to achieve better performance. Although
performance is not fully comparable, since [11] uses multiple classes
for classification. The used datasets have a different number of
classes: NBAIR dataset provides 40 classes of insects, whereas Xie1
and Xie2 provide 24 classes of insects. Due to our investigation into
the viability of aphid detection around potato plants, a self-collected
dataset is utilized to report classification performance for this
particular scene. Existing datasets were considered prior to collecting
our own, but differences in conditions, such as background,
orientation, and annotations, led to the collection of our own.

Fig. 1: An illustration of the Cross-ViT architecture. Reprinted from
[8]

In [16], in addition to research on the identification of insects,
research has been conducted on the classification of aphid life stages.
The stages of an aphid’s life cycle are as follows: the lifecycle starts
as lymph, then the lymph emerges as an aphid without wings, and
after a period of time, an aphid develops wings. Important to note
about this study is that the aphids were collected using a special
acquisition setup. A modified paper scanner captures the required
high-resolution image. Aphid life stage recognition is feasible only
with high resolution, similar to that of paper scanners. The research
demonstrates that high-detail images are required to predict the aphid
life stages or species.

2.3 Image classification with Vision Transformers
In [7], Vision Transformers (ViTs) are introduced. Transformers

were already used in Natural Language Processing (NLP) [17], but
now the transformer architecture can be used for image classification,
where ViTs were found. Instead of using self-attention layers, which
could be used together with CNNs, the complete approach is based
on NLP transformers. The most important part of the transformer
principle is that the input should be made of tokens. To get tokens,
which are words in a NLP approach, images are tokenized. Research
indicates that ViTs outperform CNNs for classification on large
datasets [7].

In [8], two plain ViT architectures are incorporated into a single
model, resulting in the Cross-ViT architecture. Figure 1 illustrates the
architecture of Cross-ViT. Since two images could now be
simultaneously inserted into the model, the Multi-Scale effect is
implemented. As with the original plain ViT model, the images are
also presented as patches. Due to two inputs as opposed to a single
input, the patches are tokenized out of different image sizes per
sub-model. This process is shown in Figure 1, the image of the cat is
cut out in multiple patches. Both sets of tokens are processed by two
individual Transformers. For the approach to be effective, their
outputs must be combined. There are four techniques for executing
this so-called Attention. Cross-Attention is selected due to its
methods’ superior performance. Cross-Attention permits the
combination of results without requiring a huge amount of computing
power. The additional classification token (CLS) generated by each
individual Transformer functions as an image summary. The CLS is
exchanged between Transformers to achieve the effect of
cross-learning. The tokens are then fed into two multilayer
perceptron networks, which output a value per class. Multi-Scale
approaches are novel for ViT, but they are used in CNN, specifically
in Feature Pyramid Networks (FPN) [18].

In [19], guidelines explain how to properly utilize plain ViT
architectures. Due to the fundamental differences between CNN and
ViT based architectures, additional explanation from their research
could prevent falling into the same pitfalls addressed in their research.



Fig. 2: Setup to capture yellow sticky plates with insects and aphids

Consequently, one of the recommendations to utilize pre-trained
models has been considered. Regularization and augmentation are
deemed less important when using pre-trained models. In addition to
these factors, the selection of pre-training datasets is considered
relevant. Guidelines for how to use Multi-Scale Cross-ViT are not
given, therefore the proper application of Cross-ViT is a part of our
research.

Our research differs from previous work on several aspects:

• Our dataset contains various species of insects. Since the
objective is to count aphids, our classifier should classify the
data into two classes: aphid or non-aphid.

• The data in our dataset has never been processed by ViTs or ViT
based networks.

• We compare a conventional CNN architecture with ViT-based
architectures on our insect dataset. Both evaluations act as the
baseline for the Single-Scale to Multi-Scale comparison.

3 MATERIALS AND METHODS

This section is divided in four parts. Section 3.1 describes how the
dataset was collected and how it was structured. Section 3.2
continues by describing what models were evaluated. The following
section continues by describing what pre-processing and
augmentations were carried out on the data before it is inserted into
the model. Section 3.4 reflects hardware-related elements of
experiment execution. Finally, the utilized metrics to evaluate and
compare experiment performance are discussed in Section 3.5.

3.1 Dataset
A self-collected dataset is utilized because the dataset must closely

resemble the actual data collected in the field. In Section 3.1.1 the
acquisition of the dataset is described, whereas Section 3.1.2 describes
the structure of the dataset.

3.1.1 Dataset acquisition
The subsequent section provides a detailed description of the

acquisition setup. The yellow sticky plates are gathered from various
locations in the northern part of the Netherlands in order to obtain
relevant variance in the data. To acquire insects over a longer period
of time, the plates were placed and collected over several weeks. The
plates are captured using an acquisition setup after collection. The
details of the plates and the acquisition setup is described in Table 1.

In order to obtain images with sufficient detail to differentiate
aphids from non-aphids, the yellow sticky plate is not captured in a
single image. Instead, the plates are imaged in four quarters to
provide more detail. The distance between the yellow sticky plate and
camera lens was approximately 60 centimeters. Illumination is
applied from each corner to be able to capture the yellow sticky plate
without shadows. The described configuration is shown in Figure 2.

Table 1: Acquisition parts

Part Detail
Yellow sticky plate around 25 x 25 cm
Size of tiles around 13 x 13 cm
Camera Sony A7 II
Camera lens Tamron F053S
Resolution (per tile) 4000x4000 pixels
Color depth 14 bits
Illumination Four LED bars

After the addition of annotations, the dataset became usable. Due
to the minor differences between aphids and other insects, a domain
expert created the annotations. The annotations are created by drawing
bounding boxes around the insects and labeling them as either aphids
or non-aphids. To obtain a dataset with a sufficient quality, multiple
data cleaning iterations were performed. The data cleaning procedure
is described in detail in Appendix A.

Because the photos of the plates contain a large number of insects,
the photos could not be used for classification directly. A new dataset
is created by taking crops of the aphids and non-aphids on the sticky
plates. This subset was created using object detection based on the
YOLOv5 [20] network, and this process is not part of this paper.
Although the performance of object detection and classification
together forms the performance of the complete pipeline. Our
research only focused on classification of images between aphids and
non-aphids.

3.1.2 Dataset structure
The images in the dataset belong either to the aphid or non-aphid

class. In Figure 3a, images of different aphids are shown. In Figure 3b,
shows images of various non-aphids. The dataset counts 6508 images
in total, of which 682 are aphids and 5826 are non-aphids. Hence,
there is an imbalance in the number of images per class. This effect
will be tempered by a pre-processing technique described in Section
3.3.

The dataset is split into three parts: training, validation, and testing.
The train split contains 56 percent of the images. The validation and
testing part contain respectively 24 and 20 percent of the images. The
distribution of the dataset is shown in Table 2. It is important to realize
that the insects and therefore cutouts vary in size. Cutout sizes range
from 45x45 pixels for the smallest to 505x505 pixels for the largest
image. The cutouts’ aspect ratio is consistently 1:1. Due to the fact that
the task of making cutouts was part of related research, the cutouts’
margins could be adjusted for pre-processing and augmentations in
our pipeline. The margin is multiplied by the square root of two for
both the height and the width. Thus, we were able to apply a random
rotation between 0 and 45 degrees and crop the center without losing
or adding pixels.

Table 2: Distribution of the dataset

Dataset split aphid non-aphid total
train 379 3261 3640
validation 170 1404 1574
test 133 1161 1294

3.2 Classifier networks
Three models were selected to evaluate in the experiments.

Pre-trained models, datasets on which they were trained, the number
of parameters, and input resolution all played a role in narrowing
down the search for the best possible models. Since Cross-ViT, in
particular, is still in its early stages, the number of pre-trained
networks available is limited. As a result, a Cross-ViT model1

1The ”crossvit-small-240” model can be found in
https://github.com/IBM/CrossViT/



(a) Examples of aphids stuck on the yellow sticky plate (b) Example of non-aphids stuck on the yellow sticky plate

Fig. 3: Two classes in the dataset: aphid and non-aphid: (a) Aphids have injecting mouthparts in the form of a relatively long, segmented
rostrum. The wings are are larger as the body (b) The non-aphid class contains a wide variety of objects. Typically, it could be other insects, but
it could also be grass or other plant life, etcetera.

introduced in Section 2.3 was chosen first. The model has 26.3
million parameters and was pre-trained on the ImageNet-1K dataset,
and the patch sizes are 12 and 16. Two regular ViTs2 are used in
addition to the Cross-ViT model. The patch sizes per model are 16
and 32, allowing us to include the effect of this parameter on our
dataset in the experiment. Furthermore, the input format is the same,
and the models are pre-trained on ImageNet-1K. The options
considered for the baseline CNN were a ResNet or VGG architecture.
The number of parameters, which should be similar to the models
mentioned earlier, led to the selection of the ResNet architecture. One
of the smallest VGG-based architectures, VGG-11, already has an
excessive number of parameters around 133 million. As a result,
ResNet-50, a model that has already been trained on ImageNet-1K, is
selected as the baseline. Table 3 compares the number of parameters
in each model. This explains why the smaller models were chosen for
both the Cross-ViT and ViT architectures. First, because the number
of parameters is similar to the chosen baseline. Second, the number
of parameters in the models influences the time required for
experiments. In addition to the number of parameters, the image

Table 3: Model parameters

model parameters [million]
resnet50 23.5
vit small patch16 224 21.7
vit small patch32 224 22.5
crossvit small 240 26.3

resolution and dataset on which pre-training was performed were
factors in model selection. As shown in Table 3, the number of
parameters for the selected models is comparable. The resolution of
the image is set to 224 by 224 pixels. As mentioned before, all
models are pre-trained on ImageNet-1K.

3.3 Data pre-processing and augmentations
To carry out various experiments with the models mentioned in

Section 3.2, data pre-processing and augmentations are applied. Data
handling and formulating the results from the model are covered in
this section. Because the data from both classes is not balanced,
balancing is performed in the pipeline. Both aphids and non-aphids
are sampled such that an equal number of aphids and non-aphids are
presented to the model. Data balancing is only enabled during
training and validation, ensuring that metrics obtained during testing
are not disrupted. Another feature of the pipeline is augmenting the
data, these functions are only activated during training and validation
if the selected experiment requires it. However, normalization and a

2vit-base-patch16-224 and vit-base-patch32-224 can be found at
https://github.com/rwightman/pytorch-image-models/

combination of resizing and cropping are always performed to
provide the models with images in the correct format. Due to the data
balancer, as described in Section 3.3, images of aphids are repeated.
Augmentation ensures images are not exactly the same for the model,
so repeating images is possible to resolve the class imbalance.
Besides this, the color of some yellow sticky plates differs a bit. To
not make this small detail overpowering, augmentations like
ColorJitter and Multiplicative Noise are included. The implemented
augmentations are mentioned in Table 4 and used during training and
validation. Augmentations are applied with a probability of 0.5,
except the MultiplicativeNoise augmentation, which has 0.9. Since
the ColorJitter and MultiplicativeNoise are configured with additional
settings, these are mentioned in Table 5 and 6.

Table 4: Applied augmentations to pipeline

Augmentation Description
Rotate Rotates the image randomly (0-45 deg)
HorizontalFlip Randomly flip over horizontal axis
VerticalFlip Randomly flip over vertical axis
ColorJitter Randomly vary colors
MultiplicativeNoise Randomly apply noise

Table 5: ColorJitter Augmentation settings

Setting Value
Brightness 0,1
Contrast 0,1
Saturation 0,2
Hue 0,01

Table 6: Multiplicative Noise augmentation settings

Setting Value
Multiplier 0,98 - 1,02
Elementwise TRUE

Table 7: Optimizer settings

Type Stochastic Gradient Descent (SGD)
Momentum 0.9
Weight decay 0.0005

The optimizer’s configuration is detailed in Table 7. Loss is
computed utilizing Categorical Cross Entropy Loss is used with the



default parameters from the Torch library 3. A maximum of 50
epochs are performed, but an early stopping with threshold of 15
epochs is configured. Only the model with the lowest validation loss
percentage is saved and tested. The settings for the learning rate
scheduler are modified within the grid search. The start learning rate
is used to initiate the training process. Patience represents the number
of epochs without improvement after which the learning rate is
reduced. As a result, once patience runs out, the learning rate drops
by 0.1 factor. Furthermore, the scheduler utilizes the Torch library’s 4

default settings.

3.4 Hardware resources
The specifications of the virtual machine (VM) where the

experiments are executed are shown in Table 8.

Table 8: Hardware specifications

Hardware VM in NHLStenden datacenter
CPU Intel Xeon Gold 6338
RAM 60GB
GPU model NVIDIA A40-16C
GPU memory 16GB
CUDA version 11.6

3.5 Evaluation metrics
The naming is set up as follows: the aphid is considered the positive

class, while the non-aphid is considered the negative class. True (T)
is considered a correct prediction, while false (F) is incorrect. These
values are calculated into more comparable values, namely accuracy,
precision, recall, and F1-score. Accuracy is the ratio between good
predictions the total number of instances:

Accuracy =
T P+T N

T P+FP+T N +FN
(1)

Precision is the ratio between the actual aphids and all predicted
aphids:

Precision =
T P

T P+FP
(2)

The ratio of predicted aphids to the actual amount of aphids is
known as recall:

Recall =
T P

T P+FN
(3)

Both values are represented in the F1-score. This is the harmonic
mean between recall and precision.

F1− score = 2∗ Precision+Recall
Precision∗Recall

(4)

The F1-score is regarded as the most important metric because it
incorporates precision and recall. Due to ambiguity regarding the
significance of a balance between precision and recall for our
approach, the F1-score is used as the best indicator of the networks’
performance. Other metrics, however, are calculated and included in
the study.

4 EXPERIMENTS & RESULTS

This experiments and results section describes the experiments
conducted to answer the research questions, along with the results
obtained. The first set of experiments is determining the
configurations for the models. In section 3.2 the baseline, ViT, and
Cross-ViT model configurations are described. The specifics of this
grid search are detailed in section 4.1. After determining the optimal

3Configuration at: https://pytorch.org/docs/stable/generated/
torch.nn.CrossEntropyLoss.html

4Configuration at: https://pytorch.org/docs/stable/generated/
torch.optim.lr scheduler.ReduceLROnPlateau.html

configurations, the final experiments were conducted on the test set.
These concluding experiments and their results are outlined in
Section 4.2.

4.1 Grid search configurations
Due to compute limitations, a selection of grid search parameters

was chosen to validate. Hyperparameter optimization has been
performed by adjusting these parameters during multiple runs to find
the best due to their distinctive architectures, ResNet and ViT-based
models do not use the same ranges. The set of values for each
parameter is indicated in Tables 11 and 12 in Appendix B. This yields
a total of 108 configurations. Each configuration was performed four
times to obtain an average and standard deviation. The F1-score was
used to quantify the performance of each configuration. The average
of these four equal configurations is derived by combining the scores
from each experiment with equal parameters. The parameters of the
experiment with the highest average F1-score were picked. In Table
9, the configuration with the best average F1-score is demonstrated,
and the corresponding F1-score is attached as well.

4.2 Experiments with selected configurations
These experiments utilize the configurations described in Section

4.1. The experiments will be evaluated using ResNet-50, ViT with
16 and 32 patch sizes, and Cross-ViT models. In order to assess the
performance under different orderings of the images, each experiment
is conducted four times. At this stage, all experiments are evaluated
using the same test set, as described in 3.1.2.

4.3 Results
All scores are calculated using the equations outlined in Section

3.5. Table 9 lists the configurations with the highest F1-score for the
models that have been verified. These outcomes are the result of the
experiments detailed in Section 4.1. The values of the discovered
hyperparameters are also summarized. In addition to selecting the
configuration with the highest F1-score, models that are close to the
best configuration in terms of performance are also analyzed. In order
to conduct this analysis, the configurations with the highest
performance are summarized in tables. These tables are attached in
Appendix C. Resnet-50, ViT16, and Cross-ViT are evaluated on the
test set. We chose ViT16 out of both plain ViT models since the
model with the smaller path size achieved higher performance. Table
10 displays the final results of the experiments discussed in Section
4.2. In addition to these results, Figure 4 describes the misclassified
images found in all four Cross-ViT experiments.

5 DISCUSSION, CONCLUSION & FUTURE WORK

This section discusses the outcomes of the experiments, draws
conclusions regarding their relevance to the research topics, and
outlines concepts for the next steps of the project.

5.1 Discussion
The first part of the discussion compares the CNN-based

architectures with the ViT-based architectures. The second part
details the selected configurations during the grid search and how
they relate to the recommendations in the state-of-the-art. The third
part describes the context of the incorrect classifications. The last part
discusses the impact of data cleaning.

The state-of-the-art indicates that ViT-based architectures should
perform better than CNN-based architectures. Comparing the
F1-scores of the ResNet-50 and ViT16 models proves this. In
addition to its higher F1-score, the standard deviation of this ViT16
model’s F1-score is lower. Since the weights of these models were
both initialized from pre-trained models, it appears that the training
process of the ViT16 model is more consistent than that of the
ResNet-50 model. However, additional experiments are required to
confirm this. The robustness of training also applies to the ViT32
model, but its performance is not superior to that of the ViT16 model.
Since the difference between these models is patch size, we can say
that the ViT16 model, which divides images into smaller patches, is



(a) Predicted as an aphid (b) Predicted as an aphid (c) Predicted as an aphid (d) Predicted as an aphid

Fig. 4: Miss classified images: (a) Multiple insects (parts) disturb the classifier. (b and c) both are clearly not aphids, so the prediction is
constantly incorrect. (d) The domain expert is not sure about the class to which this image belongs.

Table 9: Configurations with best performance on validation set per model

Model Start LR Patience Batch size Augmentations F1-score
ResNet-50 0.05 5 16 Enabled 84.95% ±2.09%
ViT16 0.0001 20 8 Disabled 86.51% ±2.15%
ViT32 0.0001 10 8 Disabled 85.33% ±0.77%
Cross-ViT 12/16 0.0005 10 8 Enabled 85.33% ±1.37%

Table 10: Performance on test set per model

model accuracy precision recall F1-score
ResNet-50 95.11% ±1.69% 90.41% ±2.56% 71.12% ±8.26% 79.43% ±5.70%
ViT16 95.81% ±0.61% 88.72% ±1.84% 75.29% ±4.45% 81.37% ±2.04%
Cross-ViT 12/16 96.54% ±0.28% 94.36% ±2.34% 77.18% ±2.20% 84.88% ±1.06%

more sensitive to subtle differences in the images. In this study, we
found that small patch sizes work best for self-attention in images
with small objects, like the insects in our dataset. Combining two
patch sizes, as in the Cross-ViT model, increases the efficiency of
self-attention. Cross-ViT is superior to ResNet-50 and plain ViTs as
shown by the higher F1-score. In addition, the ViT’s F1-score has the
lowest standard deviation, indicating that this model is also the most
robust. Despite the fact that the minor difference in validation
performance between ViT16 and Cross-ViT indicates the opposite,
the standard deviation should be included in the comparison to
demonstrate that the difference is minimal. There are discrepancies
between the F1-score distributions of the ResNet-50 and plain ViT
models, as ResNet-50 outperforms ViT16 in terms of precision with
standard thresholds. The opposite is applicable to recall. However,
the Cross-ViT model is more powerful, so selection based on these
metrics is unnecessary. Cross-ViT outperforms the other models in
terms of all average scores and standard deviations.

For pre-trained plain ViT-based models, augmentations do not
improve performance. The state-of-the-art has previously shown this
[19]. However, we discovered that augmentations improve the
performance if pre-trained Cross-ViT models are used. Table 22
suggests that about 1 percent of the increase in the F1-score is
attributable to augmentations.

Table 9 indicates that ViT-based models outperform the ResNet-50
model on the validation split, unless the performance of the models in
the grid search cannot be used to draw conclusions. As described in
Section 4.3, the appendices contain additional results. These results
demonstrate that the configurations with particular hyperparameters
obtained through these grid searches are optimal. This additional
validation is performed on the batch size and augmentations. If a
chosen hyperparameter value dominates the best-performing
experiments, it can be assumed to be the correct parameter.
Furthermore, the selection was based on averages, so that an
unintentional outlier would have less influence. Since the best
performing configurations vary based on the start learning rate, the

grid search result for this parameter is validated in a different manner.
The selected start learning rate should not be on a grid search limit
and within the selected limits. Since all initial learning rates were
within the specified limit, the identified values are considered as close
as possible. Since the learning rate and patience are directly related,
only the learning rate is selected for verification.

As demonstrated in Figure 4, the model consistently misclassifies
images. To describe the context, four of them are displayed. As stated
previously, images should only contain one insect. Due to the density
of insects on the yellow sticky plates, that is impossible. The use of
yellow sticky plates will result in misclassified images due to the
presence of multiple insects or insect parts. Particularly Figure 4a
depicts numerous insect parts, demonstrating the difficulty of
classifying such images. Misclassifications are only reported for the
test split of the dataset, but it is reasonable to assume that similar
cases are also present in the other splits. Consequently, we can say
that our dataset still contains imperfect images, which impacts the
classification performance.

Since the results are based solely on the most recent set of cleaned
data, performance claims due to data cleaning are impossible. Since it
is evident that the quality of the annotations has improved throughout
the cleaning iterations, we anticipate that there is still room for
improvement. Due to the time constraints of our research, two
iterations were conducted. In addition, the primary purpose of our
research is to compare multiple models, so the data quality achieved
after two cleaning iterations was deemed adequate.

5.2 Conclusion
This study proposed a comparison of the CNN baseline, the

standard ViT model, and the Cross-ViT model. Prior to discussing the
results, the research questions were answered.

What is the classification performance of a CNN baseline?.
ResNet-50 is chosen as CNN baseline. The mean F1-score is 79.43
percent, and the standard deviation is 5.7 percent. This indicates that
71.12 percent of the aphids were discovered. And 90.41 percent of



the predicted aphids are actually aphids.
In order to answer the question, What is the classification

performance of a single-scale ViT architecture? The classification
performance of the single-scale ViT architecture is represented by the
ViT16 since its smaller patch size provides higher sensibility to small
objects.

Does it outperform the single-scale CNN baseline? The ViT16
outperforms the CNN baseline with an F1-score that is 1.94 percent
higher and a standard deviation that is 3.66 percent lower.

Can a Multi-Scale ViT architecture outperform a single-scale ViT
architecture?, to answer this question, the performance of the
Cross-ViT model is evaluated. The achieved F1-score is 84.88
percent with a standard deviation of 1.01 percent. Cross-ViT, being a
Multi-Scale ViT architecture, outperforms ViT16, a single-scale ViT
architecture, by 3.51 percent on the F1-score. In addition to the
substantial difference in the F1-score, the Cross-ViT architecture has
a 0.98 percent lower standard deviation. Cross-ViT performance is
consequently more consistent than ViT16 performance.

Since the experiments were conducted on our insect database, we
can conclude those Multi-Scale representations of features with
Vision Transformers significantly improve classification for this
problem. Due to the limited number of data cleaning iterations, the
performance obtained on this particular dataset could be improved
further. The classification component is used within a larger project
in which the goal is to first localize insects and afterward classify
them as aphid or non-aphid. To ensure that the performance is
adequate for aphid detection, it is necessary to evaluate the overall
performance.

5.3 Future Work

The models used in this research were obtained from the TIMM
library 5. Since the suitable models for our research were limited, we
anticipate improvements in the classification performance if there are
no limitations in terms of model comparability. Due to the active
community surrounding ViTs, it is anticipated that additional
pre-trained models will be available in the near future. In addition to
using models with other datasets as a source for pre-training, models
with more parameters can be used to search for performance
improvements. Due to the number of model parameters that were
attempted to be matched in our research, it is likely that quality was
compromised. Implementing the findings of this study and enhancing
the pipeline includes selecting the optimal Cross-ViT model, which
will most likely improve classification performance. As stated
previously, there is room for improvement in the incorrect image
labels. If the model can be trained on better data, the performance of
classification will likely improve. To further reduce the number of
incorrect labels, additional steps can be taken, such as executing more
data cleaning cycles. However, we have discovered that clean-up in
collaboration with a domain expert is labour-intensive. The optimal
solution appears to be an environment in which only aphids are
captured.

Our research only verifies the Multi-Scale effect with ViTs.
Evaluating Multi-Scale based on CNN makes the comparison more
complete. A model like the Feature Pyramid Networks, which were
mentioned earlier, could provide the required metrics for comparison.

Since our research indicates inconsistency between classification
performance on the train and test splits of the dataset, it would be
preferable to report performance using the entire dataset.
Cross-Validation, which utilizes all of the data across multiple
iterations, appears to be a viable solution.

An object detector generated the selection of the dataset used in
our research. The overall performance of the pipeline is dependent
upon both the object detector and this classification system. We
discovered that the used object detector can further be improved, as
shown by the misclassifications. Consequently, the input to our
classification algorithm is inadequate. An alternative to object
detection was investigated to provide quality input to our network.

5https://timm.fast.ai/

Instead of doing object detection on a plate where lots of insects are
stuck. The insects are captured in flight, and the advantages and other
details are described in Appendix D under the heading Line scan
setup.
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A DATA CLEANING

Data cleaning is done to reduce the number of incorrectly
annotated images. Incorrectly annotated data causes problems during
the training process, and the models’ classification performance
suffers. Due to the large number of images in our dataset, letting the
domain experts review all the images was not feasible. Therefore, the
normalized output probability scores of a baseline model are used to
select images for extra review. Figures 5a and 5b shows the
normalized output probability in the aphid class. Images with a
confidence rating below a certain threshold should be sent for extra
review. Figure 5 demonstrates the normalized output probability is
less distributed in the results of the second data cleaning iteration.

B GRID SEARCHES

The following hyperparameters are tested on the ResNet-50 model
on the validation split of our dataset during the grid search. The
examined values for the parameters are described in Table 11.

Table 11: Grid search CNN-based models

Parameter Values
Start LR {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}
Patience {5, 10, 20}
Batch size {8, 16, 32}
Augmentations {Enabled, Disabled}
Network {ResNet-50}

To determine the optimal configuration for ViT and Cross-ViT, a
grid search similar to the one mentioned in Table 11 is conducted. The
considered values for the parameters are depicted in Table 12.

Table 12: Grid search ViT-based models

Parameter Values
Start LR {1e-05, 5e-05, 0.0001, 0.0005, 0.001, 0.005}
Patience {5, 10, 20}
Batch size {8, 16, 32}
Augmentations {Enabled, Disabled}
Network {ViT 16, ViT 32, Cross-ViT 12-16}



C TOP 10 CONFIGURATIONS PER MODEL

Tables 13, 16, 19, and 22 presents the ten best configurations based
on F1-score per model. The following tables (14, 15, 17, 18, 20, 21,
23, 24) depicts the distribution of batch size and augmentation
parameters.

Table 13: Top 10 configurations for ResNet-50 model sorted on
F1-score

Start LR Patience Batch s. Aug. F1-score
0.05 5 16 Enabled 84.95% ±2.09%
0.05 10 32 Enabled 84.81% ±3.33%
0.01 5 8 Enabled 84.39% ±1.93%
0.005 20 16 Enabled 83.94% ±3.42%
0.005 5 16 Enabled 83.82% ±1.04%
0.005 20 32 Enabled 83.76% ±1.93%
0.005 5 8 Enabled 83.74% ±1.41%
0.001 10 8 Disabled 83.73% ±4.83%
0.01 5 32 Disabled 83.67% ±2.39%
0.01 20 16 Enabled 83.56% ±2.11%

Table 14: Distribution of the batch size within the top 10 ResNet-50
model

Batch size Amount within top 10
8 3
16 4
32 3

Table 15: Distribution of the augmentations within the top 10
ResNet-50 model

Augmentations Amount within top 10
Enabled 8
Disabled 2

Table 16: Top 10 configurations for ViT16 model sorted on F1-score

Start LR Patience Batch s. Aug. F1-score
0.0001 20 8 Disabled 86.51% ±2.15%
0.0001 10 16 Enabled 86.12% ±0.79%
1e-05 20 8 Enabled 85.63% ±2.02%
0.0001 5 8 Disabled 85.46% ±4.06%
0.0005 10 32 Disabled 85.30% ±1.05%
0.0001 5 8 Enabled 85.15% ±0.48%
0.0001 10 16 Disabled 85.11% ±1.71%
5e-05 10 8 Disabled 85.09% ±1.50%
0.0005 5 32 Disabled 85.04% ±3.90%
0.0005 20 32 Enabled 84.75% ±1.37%

Table 17: Distribution of the batch size within the top 10 ViT16 model

Batch size Amount within top 10
8 5
16 2
32 3

Table 18: Distribution of the augmentations within the top 10 ViT16
model

Augmentations Amount within top 10
Enabled 4
Disabled 6

Table 19: Top 10 configurations for ViT32 model sorted on F1-score

Start LR Patience Batch s. Aug. F1-score
0.0001 10 8 Disabled 85.33%±0.77%
0.001 10 32 Disabled 85.00%±1.07%
0.0005 5 32 Disabled 84.55%±2.22%
0.0001 5 8 Disabled 84.49%±1.54%
5e-05 5 8 Enabled 84.21%±1.68%
0.0005 10 32 Disabled 84.18%±1.46%
0.0005 20 32 Enabled 83.66%±1.25%
0.001 5 16 Disabled 83.54%±1.68%
0.0005 5 16 Disabled 83.53%±0.63%
1e-05 10 8 Enabled 83.42%±1.76%

Table 20: Distribution of the batch size within the top 10 ViT32 model

Batch size Amount within top 10
8 4
16 2
32 4

Table 21: Distribution of the augmentations within the top 10 ViT32
model

Augmentations Amount within top 10
Enabled 3
Disabled 7

Table 22: Top 10 configurations for Cross-ViT model sorted on
F1-score

Start LR Patience Batch s. Aug. F1-score
0.0005 10 8 Enabled 85.33% ±1.37%
0.0001 10 8 Enabled 85.17% ±1.95%
0.001 20 32 Enabled 85.13% ±3.17%
0.0005 10 16 Enabled 85.10% ±2.66%
0.001 10 32 Enabled 84.90% ±2.44%
0.0005 10 8 Disabled 84.47% ±1.59%
0.0005 10 32 Enabled 84.02% ±5.23%
5e-05 20 16 Enabled 83.87% ±2.89%
0.0005 5 32 Enabled 83.82% ±2.62%
0.0005 20 8 Disabled 83.48% ±3.98%

Table 23: Best batch size configuration for the Cross-ViT model

Batch size Amount within top 10
8 4
16 2
32 4



(a) Overview of the line scan camera
approach

(b) Photo of the experimental line
scan setup

(c) Image of falling insect (d) Image of falling fruit fly
annotated with bounding box

Fig. 6: Line scan camera setup: (a) The line scan camera scans the red line towards the small led strip. If something passes; the high resolution
camera captures an image with the insect in focus. (b) The camera is on the left, pointing towards the light source (right between LED bar and
aluminium profile). The LED bars around the yellow sticky plate are enabled when the high resolution camera captures the scene. (c) Image
captured by high resolution camera, the falling insect is in focus and others are blurry (d) Same as previous but a bounding box around the fruit
fly has generated with edge detection.

Table 24: Best augmentation configuration for the Cross-ViT model

Augmentations Amount within top 10
Enabled 2
Disabled 8

D LINE SCAN SETUP

Due to the fact that there is room for improvement in the
performance of the object detector, other techniques to obtain a
cutout with an insect to insert in our classifier are being researched.
The line scan setup shows promising results for this task. As shown
in Figure 6a, the setup is similar to the one described in Section 3.1.1.
The high-resolution camera is still capturing the yellow sticky plates
(YSP) while illuminated by the four LED bars around the YSP. The
LED bars are replaced with ones with flash capability, due to the
timing should be perfect to capture the insect while it is falling. This
is accomplished by setting the field of focus of the camera around five
centimeters above the yellow sticky plate. The lifted field of focus
allows us to capture the insects in flight and ensures that the stuck
insects on the yellow sticky plate are blurred. Therefore the insect can
easily be located with edge detection. The high-resolution camera
could constantly capture the scene, but this has several disadvantages.
Firstly the acquisition setup requires exceptional hardware, the
camera should capture the scene with a very high frame rate. Because
the resolution is also large, the amount of data to process and store
will be enormous. Secondly, the amount of data to process after the
data is captured and stored is immense and requires huge computing
power. To tackle this problem, a high resolution camera should only
capture the scene if there is actually an insect in the field of focus. A
trigger signal should be given without significant delay to the high
resolution camera. The line scan setup provides this trigger signal. In
Figure 6a the red line displays the trigger field of the line scan
camera. The red line lays in the field of focus of the high resolution
camera. To be sure the line scan camera triggers only on objects in
the field of focus, a small led strip is used as light source, this makes
the setup robust. In Figure 6b the experimental setup is shown. The
line scan camera is a IDS UI-3060CP-M-GL together with a Kowa
HR978NCN-3H lens. This camera is configured to capture only one
row of pixels to be able to provide the trigger signal as quickly as
possible. A captured image with this setup is shown in Figure 6c. In
Figure 6d, the falling insect is surrounded by a bounding box. The
coordinates of the bounding boxes are acquired with edge detection,
which makes this system fast and requires a little computing resource.


