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Abstract—The health of seed potato crops is being threatened by viruses like the Potato Virus Y (PVY). In the last five years, more
than 15% of harvested seed potatoes and sugar beans were infected with the Potato Virus Y. There is an empirical relationship
between the number of aphids and the number of infected plants [1]. Early detection of aphids creates the opportunity to instantly
use pesticides. Currently, manually counting aphids is very time-consuming and the use of Convolutional Neural Networks, to detect
aphids and accordingly decide the necessity of applying pesticides, could offer a solution. This study considers a single-stage object
detection model for the real-time detection of aphids on yellow sticky plates with YOLOv5. A dataset has been acquired with images
of yellow sticky plates with aphids and other insects. Because the aphids are tiny, images with a high resolution are being used. To
reduce the needed computing power, tiles are selected from the images which are then processed by the model. The network is
competent in selecting tiles that always contain either an aphid or an insect, named positive tiling. The YOLOv5l-model with positive
tiling is the best-performing model with an F1-score of 0.525. Possible extensions of this study are being discussed, together with
suggestions for future research.
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1 INTRODUCTION

According to Projectplan POP3+ Fryslân: Innovation in Aphid
Detection [2], research of Wageningen University & Research
(WUR) has shown that the health of seed potato crops is being
threatened by viruses. Viruses like the Potato Virus Y (PVY) cause
economic harm and jeopardize the strong export position of Dutch
seed potatoes and sugar beans.

To maintain this strong export position the health and quality of the
product are paramount. In the last five years, more than 15 percent of
harvested seed potatoes and sugar beans were infected with the PVY
virus [1]. This diminishes the value of the product and thus results
in less profit. It is believed that viruses such as PVY are spread by
insects, with aphids in particular. This assumption is supported by the
direct relationship between the number of aphids and the percentage
of infected crops in the field [1].

Early detection of aphids creates the opportunity to use pesticides
locally when needed, resulting in better protection of the crops and
less use of pesticides. Here the speed of the detection process is
crucial, since the control of the aphids needs to happen before the
further spreading of deceases.

Currently, the process of detecting aphids is time-consuming and
not as efficient as it could be. With yellow sticky plates, insects are
attracted and caught, after which the aphids are manually identified
and counted. The results of these counts determine the number of
pesticides used for the entire field, while aphids could be only present
in certain regions. Here the use of Convolutional Neural Networks, to
detect aphids and accordingly decide the necessity of applying
pesticides, could be a solution.

For object detection with Convolutional Neural Networks, there
are two main approaches that can be considered. The
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single-stage-models approach performs the detection of objects and
the classification at the same time, and the two-stage-models
approach has an object detection model and a different classification
model. In this study, the single-stage approach is being used.

The aim of this study is to design a single-stage Object Detection
and Classification Model able to detect and identify insects and
aphids on yellow sticky plates. Hence, the main research question is
the following:

Can a single-stage object detection and qualification model be used
to robustly find aphids on yellow sticky plates?

The professorship of Computer Vision Data Science has collected
a dataset containing aphids and insects, the ’Aphids and Other Insects’
dataset. The dataset consists of high-resolution images that take a large
amount of computing power to process these images. Image tiling can
be used to crop tiles from the images, which are then processed.

Another possible difficulty with the dataset is that there is an
imbalance between the number of aphids and insects. The effect of
this imbalance will be studied.
Therefore, the sub-questions are the following:

• Does image tiling benefit the detection of tiny insects?

• Would an imbalanced dataset influence the detection results of
tiny insects per class?



2 STATE OF THE ART

The target of this study is to create a real-time network based on
YOLOv5 specified in the detection of small objects. Section 2.1
discusses numerous object-detecting networks based on YOLOv5
that have been established.

A study in detecting tiny pests from sticky traps is shown in section
2.2. As well as research being done on regional analysis such as the
power of tiling for small object detection, shown in section 2.3.

2.1 Object detection with YOLOv5
In [3], the study on the single-stage object detection and classification
model, YOLO is presented. Previous models were dependent on a
two-stage approach in which, first, regions of interest are found after
which a classifier processes these regions. You Only Look
Once(YOLO) is a single model able to detect as well as classify
objects. The network is now known for good performance in
real-time object detection algorithms.

More recently, in 2020 a new version of YOLO was released, the
YOLOv5 model [4]. While not written by the same author, since the
network is based on the other YOLO versions and the same
characteristics are applicable, the model is assumed to be its
successor. YOLOv5, the more recent version of YOLO, has been
shown to provide good performance in real-time object detection [5]
[6] [7].

2.2 Field detection of tiny insects
In [8], a network using RCNN-models was constructed to detect
thrips and whiteflies on yellow sticky plates in a greenhouse. The
network was designed for real-time monitoring of the insect
population in the greenhouse. The best-performing model of the
study was the Tpest-RCNN-model, consisting of pest feature learning
with VGG16, Region of Interest proposals, and classification.

2.3 Tiling for small objects
In ‘The Power of Tiling for Small Object Detection’ researchers have
tried to identify pedestrians and traffic real-time with images from a
micro aerial vehicle (MAV)[9]. For use on mobile GPU’s a balance
must be sought between higher accuracy and less computational
power. For the detection of pedestrians and vehicles onboard a MAV,
with high-resolution imagery, PeleeNet is considered to be the most
efficient on mobile GPUs.

Training models with high-resolution images is not efficient since
the model is asked to analyze empty parts of images as well. The
tinier the object to identify, the higher the resolution of the image
should be to get an accurate model. To establish a fast-performing but
accurate model, image tiling has shown to be a solution. [8] [9] [10].
Image tiling requires extra processing compared to using raw images,
however, a lot less data needs to be loaded and therefore the model
has a faster performance.

3 MATERIALS AND METHODS

The requirements for the study are presented in this section, together
with the specific techniques that have been applied.

The dataset of the professorship, the ’Aphids and Other Insects’
dataset, is discussed in 3.1. 3.2 explains what is considered the ground
truth and how the data has been divided. The pre-processing of the
data is discussed in 3.3, and the use of object detection models in 3.4.
In 3.5, the used hardware is stated. How the results are shown, is
discussed in 3.6.

3.1 Dataset Acquisition
In preparation for this study, the professorship has carried out
experiments at seed potato farms across Friesland, the Netherlands.
Since aphids and other insects appear to be attracted to bright yellow
colors, yellow sticky plates were placed at the farms to catch these
insects.

A dataset of images of yellow sticky plates has been collected by
the professorship, which contains both aphids and other insects. For

four months, every two weeks these yellow sticky traps were collected
and placed at ten Frisian farms, resulting in 80 yellow sticky plates.
The collected traps were used for acquiring images.

Fig. 1: Camera Setup for image acquisition

In a controlled environment, images of the yellow sticky traps
were taken with a SONY a7 MARK II SLR-camera. An image of
each quarter of the yellow sticky plates was captured with the camera
creating images with a resolution of 6000 x 4000 pixels, creating four
individual images per yellow sticky plate. Resulting in a total of 320
images. The yellow sticky plates that have been used are 250x250
mm. Other specifications regarding the camera are shown in table 1.

Table 1: Camera Specifications

Component: Specifications:
Camera Sony A7II
Camera lens Tamron F053S
Camera Resolution 6000x4000 pixels
Sensor Size 35.8x23.9 mm
Color depth/Bitrate 14-bit uncompressed Raw
Illumination Low angle illumination

3.2 Ground Truth and Dataset division
3.2.1 Ground Truth
To create square images, all images captured by the camera have been
cropped. The images of 6000x4000 pixels, have been cropped to a
wanted size of 4000x4000 pixels.

After cropping, the data was annotated to create a ground truth.
Annotation software was used to annotate the insects by creating a
bounding box around the surface of the insects[11]. After which the
insects were manually annotated as an ‘Aphid’ or ‘Non-aphid’. The
bounding boxes and class names in combination with the images are
considered the ground truth. Object detection methods use this to train
a model.

3.2.2 Train, Validation and Test Dataset
From the images combined with their annotations, the ’Aphids and
Other Insects Dataset’ has been established. The images have been
divided into three groups: a group for training, one for validation, and
one for testing.

The division of the dataset ensures the network will perform well
on data it has never seen before. If the validation and test are already
shown to the network it will perform better on this specific data, but



Fig. 2: Image with annotations made with LabelImg annotation
software.

probably worse on data, it has never seen before. The principle were
the network is performing well only because it has seen the specific
data before, and only on this data, is called overtraining.

For the purpose of finding the effect of the annotations on the
results, another two groups are introduced in which the objects are
again annotated, only now following other annotating rules. In the
qualitative results of the general dataset, misclassifications in the
annotations were noted, as well as annotations bigger than the
objects. Insects with parts missing were not annotated. In the newly
annotated data, all misclassifications have been adjusted and all
insects were annotated.

The number of images per group and amount of aphids and
non-aphids is shown in Table 2.

• Four tiles from the validation group are again annotated for
End-Validation

• Four tiles from the Testing group are again annotated for the
Improved Testing group.

The larger testing dataset is now neglected and the better-annotated
End-Validation and Improved Testing groups are used instead.

Table 2: Dataset division

Model Images Non-Aphids Aphids
Training 102 3302 402
Validation 47 1427 181
Testing 22 1200 136
End-Validation 4 369 50
Improved Testing 4 369 50

3.3 Pre-processing
3.3.1 Tiling
Because images with a high resolution are being used, tiles, which are
smaller cutouts or crops, are selected from the images which are then
processed by the model. Because of the small size of the insects,
aphids and non-aphids are difficult to distinguish. High-resolution
images, taken from a close distance of approximately 500 mm
contain a lot of detail of the insects, making it easier for the models
but processing these images does require a lot of computing power.
Images containing more detail can be processed with the same

computing power by selecting tiles from the images, instead of going
over whole plates. The tile size for the baseline is set at 640x640
pixels.

The possibility to create specific tiles containing at least one aphid
or non-aphid, has been integrated. Without this, the images contain
regions with no insects during training, tiles could be selected without
any aphids or non-aphids on them. If this happens often, it prevents
the network from learning what an aphid or non-aphids looks like.
To overcome this problem, the coordinates of a bounding box from
the ground truth are picked and a tile around it is created. Thereby
resulting in tiles always containing an aphid or a non-aphid.

This also introduces the possibility of balancing the number of
aphids versus non-aphids seen by the model during training. The
aphid dataset contains approximately ten times as many insects as
aphids, meaning the dataset is imbalanced. A probability for
sampling can be chosen to counteract this imbalance. The probability
decides how often the network should create a tile containing an
aphid, or a tile containing either a non-aphid. When an image is
chosen with no aphids, a tile with an insect is created.

Because all created tiles can contain more than just one aphid or
insect, a class probability of 50 percent still results in an imbalance.
For the baseline, the probability is set at 50 percent. If an image
contains insects and aphids, the chance the model picks either a tile
with an insect or a tile with an aphid is 50 percent. Some images
contain no aphids, in that case, the model always picks a tile with an
insect.

3.3.2 Augmentations
Furthermore, the possibility for the use of augmentations is added,
expected to create a more reliable model in uncontrolled
environments and enlarge the dataset. Augmentations modify an
original image slightly, creating a new image with the same
characteristics but differing from the original. Because of this, the
same images look different every time they go through training.

Horizontal and vertical flipping is considered, next to a color jitter
and applying noise multipliers. Table 3 shows the hyperparameters of
the color jitter. Table 4 shows those of the multiplicative noise.

Table 3: Hyperparameters for color jitter

Color Jitter: Brightness Contrast Saturation Hue
Value: 0.02 0.02 0.02 0.02

Table 4: Hyperparameters for multiplicative noise: min mult =
minimum multiplier, max Mult = maximum multiplier.

Multiplicative Noise min Mult max Mult Random sample
Value: 0.98 1.02 True

3.3.3 Normalising Images
The images are normalized to values between 0 and 1. For 16-bit
images, this is done by subtracting mean = 0 and dividing by standard
deviation as shown in equation 1.

normalized image =
(original img−mean)
(standard deviasion)

(1)

3.4 Object Detection Model
3.4.1 YOLOv5
Several YOLOv5 models are available. In this research, the models
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x are considered.

The YOLOv5 models are pretrained on the Common Objects in
Context [12] dataset. During pre-training, images are used with a size
of 640x640 pixels. Because of this, a tile size of 640x640 could turn
out to be ideal in training.



3.4.2 Training & Validation
Random tiles are created during training & validation. The tile size
is one of the hyperparameters, standard set at 640x640 pixels. Figure
3a shows a tile created in training. Figure 3b shows a tile created in
validation with the made predictions in white. Every two epochs of
training, the model will validate whether learning has improved. The
other hyperparameters are the number of tiles per image, batch size,
learning rate, and the patience of the scheduler. For the baseline, the
following values are used: Number f tiles of 2 tiles per image, a batch
size of 2, a learning rate of 0.001, and no patience.

(a) Cropped tile with annotations
in green during training.

(b) Cropped tile with ground truth
in green + predictions in white.

Fig. 3: Cutout tiles in training and validation

3.4.3 Testing
Images are divided into fixed tiles and are run through testing. The
tile size used for testing is 640x640 pixels. The tile size should
always be the same in training and testing. The image with Bounding
Boxes of the Ground Truth and the Predictions is reconstructed and
saved. Figure 4 shows a testing image with ground truth in green and
predictions in white. The yellow lines show the borders of the
individually analyzed tiles.

Fig. 4: Object detection and classification during Testing. Green =
Ground truth, White = Predictions

3.5 Hardware
The machine used to carry out experiments consists of an Intel®
Core(TM) i9-7960X CPU @ 2.80GHz (8 cores) CPU and an
NVIDIA® GeForce RTX 2070(8.000 Gigabyte Memory) GPU.

3.6 Evaluation Metrics
The performance of the models is evaluated with intersection over
union(IoU). With IoU, the ground truth bounding box is compared to
the predicted bounding box. A threshold of 0.5 is used, meaning an

intersection of 50 percent between the ground truth- and the predicted
bounding box is needed to label the prediction as a correct one.

To compare the performance of the models, the precision, recall,
F1-score, and mAP-score(Mean Average Precision), on the aphids
and Non-aphids, are considered. As well as the precision, recall, and
F1-score on aphids only. A confusion matrix has been made for each
class to identify where the models are struggling the most. With the
data results of the performance, choices can be made between
models.

During the experiments, the decision has been made that above all
the precision, recall, and F1-score regarding only aphids should be
considered. The results regarding only aphids are considered to be
more useful since they will show the feasibility of detecting aphids
with the models. The models are compared using F1-score on aphids,
showing the overall strength of the models in this class.

Precision is the score for the ratio between the number of correct
predictions and the total nu of predictions.TP being the True Positives,
meaning the fraction of Aphids detected over all objects. FP being the
False Positives, meaning non-aphids detected as aphids. Equation 2

Precision =
T P

T P+FP
(2)

In Equation 3 the equation for recall is shown. Recall is the score
for the ratio between the number of correct predictions and the total
number of the ground truth. TP being the True Positives, FN being
False Negatives.

Recall =
T P

T P+FN
(3)

The F1-score arises from the average between the precision and the
recall. As shown in Equation 4

F1 =
2∗Precision∗Recall

Precision+Recall
(4)

The confusion matrices show the four values for each model for
True Positives(TP), True Negatives(TN), False Positives(FP), and
False Negatives(FN). For each class, there is a matrix. Table 5 shows
the matrix for aphids. Table 6 shows the matrix for other insects.

Table 5: Confusion Matrix: Aphids

True Aphid No Aphid
Predicted Aphid TP FP

Predicted No Aphid FN TN

Table 6: Confusion Matrix: Insects

True Insect No Insect
Predicted Insect TP FP

Predicted No Insect FN TN



4 EXPERIMENTS AND RESULTS

Experiments have been executed on the influence of different
hyper-parameters and experimental settings, of the end-to-end tiled
YOLOv5 Tiled Object Detection model, on the ’Aphids & Other
Insects Dataset’. The first experiment compares the different
YOLO-models. YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x
are compared. In the second experiment, different parameters for
training and validation are considered, being the batch size, learning
rate, and patience. In the third experiment, the effect of batch size,
tile size, tiling, and use of augmentations is shown. The last
experiment considers using different probabilities for positive tiling.
The number of tiles per image of 2 is used for all experiments.

4.1 Experiment 1: Different YOLO-models
Four different YOLOv5-models, YOLOv5s, YOLOv5m, YOLOv5l,
YOLOv5x, are compared. All hyper-parameters are equal for the four
models, having a batch size of 2, the number of tiles per image is 2,
and a learning rate of 0.0001. The experiments have been running for
100 epochs. No scheduler was used in this experiment. A summary
of the experiment is shown in Table 7.

Table 7: Experiment 1: considering different YOLO-models, Batch =
Batch size, Learning rt = Learning rate

Model Batch No. Tiles Learning rt. Epochs
YOLOv5 s/m/l/x 2 2 0.0001 100

4.1.1 Results Experiment 1
Table 8 shows the results of experiment 1. From the F1-score in the
table can be concluded that larger YOLOv5-models are
outperforming the smaller models on the ’Aphids & Other Insects
Dataset’. This is as expected since the larger YOLOv5-models are in
fact larger algorithms requiring also more computing power.

Although this would suggest the use of the largest model, the size
of the model is, due to available computational power, also inversely
proportional to the batch size. This is further discussed in experiment
2. All models will still be considered in experiments 2 and 3.

Table 8: Results Table 1: Aphids and Non-aphids

Model Precision Recall F1-Score
YOLOv5s 0.76 0.67 0.71
YOLOv5m 0.75 0.68 0.72
YOLOv5l 0.78 0.67 0.72
YOLOv5x 0.76 0.70 0.73

4.2 Experiment 2: Basic hyperparameters
Since the different YOLOv5-models are expected to deliver different
results, depending on different parameters, all YOLO-models have
been compared in combination with batch size, learning rate, and
patience. Patience introduces a scheduler that reduces the learning
rate when the model is not improving for a given number of epochs,
with patience being the number of epochs. The batch size in
combination with tile size is limited by the amount of memory of the
GPU. In this study, the maximum of the (batch size * the number of
tiles for each model being: YOLOv5s-model<=16,
YOLOv5m-model<=8, YOLOv5l-model<=4,
YOLOv5x-model<=4. For all experiments, a number of tiles of 2 per
image has been used.

The best batch size, learning rate, and patience will be determined
by the experiment. The learning rate and patience will be used in
experiment 3. All batch sizes are still considered in experiment 3, due
to find if there is a relation between batch size and tile size.

YOLO Model Batch Size Learn Rate Patience
s/m/l/x 2/4/8 0.01/0.001/0.0001 0/20/40

4.2.1 Results Experiment 2
The best results of experiment 2 are shown in table 9. All best results
have a learning rate of 0.001 and a patience of 20 epochs.

In table 9 can be seen that larger batch sizes result in higher
F1-scores. At a certain point, the network has seen most of the aphids
in the dataset at least once. A possible explanation for the results
could therefore be that the network is beginning to overtrain.
Overtraining is the principle where the network is trained too
specifically on the data at hand during training. Because of this, the
network would perform worse on data it has never seen before.

Table 9: Results experiment 3. Pre A = Precision Aphids, Rec A =
Recall Aphids, F1 A = F1-score Aphids.

Model Batch Epochs Pre A Rec A F1 A
YOLOv5s 2 400 0.382 0.559 0.454

4 400 0.449 0.419 0.433
8 400 0.430 0.418 0.424

YOLOv5m 4 400 0.431 0.520 0.471
YOLOv5l 2 400 0.455 0.549 0.485

4.3 Experiment 3: Tile size, Tiling & Augmentations
The best YOLO-models, learning rate, and patience have been used
as the baseline for experiment 3. This means that the batch size is still
a variable. 24 experiments have been carried out differing in batch
size, tile size, tiling, and augmentations.

Table 10: Experiment 3

Batch size Tile size Tiling Augmentation
2/4/8 320/640 Tiling/Positive Tiling No/Yes

4.3.1 Results experiment 3
The results are shown in table 11. YOLO-models YOLOv5m and
YOLOv5l are used in combination with a learning rate of 0.001 and
patience of 20 epochs.

As can be concluded from table 11, tiles with a size of 640x640
pixels seem to be preferable above tiles with a size of 320x320 pixels.
The YOLOv5l-model with a batch size of 2 seems to outperform all
other experiments with an F1-score on aphids of 0.525. Furthermore,
no advantages have been found in the use of augmentations.

4.4 Experiment 4: Probability
Experiment 4 considers the change in class probability. During the
tiling process, one of the hyperparameters is the class probability,
deciding how often a tile is created around an aphid and how often
around a non-aphid. A 50% probability for each is compared with a
100% probability of creating a tile with an aphid. The 100%
probability counters the imbalance between the number of aphids and
non-aphids seen by the network.

4.4.1 Results experiment 4
While it was expected that removing the imbalance by changing the
probability would result in better performances of the network, table
12 shows that there is no difference between the results of the different
probabilities. However, during these experiments, another interesting
point came forward. When looking at the F1-scores on aphids, the
probability of 100% aphids, seems to train much faster regarding the
detection of aphids.



Table 11: Results experiment 3. Pre A = Precision Aphids, Rec A =
Recall Aphids, F1 A = F1-score Aphids.

Model Batch Tile Aug Prec A Rec A F1 A
m 2 640 No 0.488 0.463 0.475

640 Yes 0.576 0.390 0.465
4 640 No 0.492 0.456 0.473

640 Yes 0.389 0.478 0.429
320 No 0.416 0.507 0.457

l 2 640 No 0.473 0.588 0.525
2 640 Yes 0.593 0.397 0.476

Table 12: Experiment 4

YOLO-model Batch size Probability
s/m/l/x 2/4/8 50/50 , 100/0

5 DISCUSSION, CONCLUSION AND FUTURE WORK

This section discusses the main findings of the study and states the
conclusions that have been drawn from these findings, after which
possible options for future research are given.

5.1 Discussion
The study suggests that the use of larger YOLO-models results in
better performances on the ’Aphid Dataset’. Overall, a larger batch
size results in better performances and faster training of the network,
as shown in table 8 and 9. The batch size in combination with the
number of tiles per image is limited by the amount of memory of the
GPU.

It is believed that even higher batch sizes in combination with the
YOLOv5x-model would result in even better performances. To
accomplish these results, more computing power is needed, as well as
a larger dataset. From the fact that larger batch sizes result in faster
training, in combination with the occurrence of better performances
on non-aphids with larger batch sizes at the end of the training, the
assumption is that the network needs more aphids to train on.

The study has also shown that positive tiling, where only tiles are
selected containing either an aphid or a non-aphid, outperforms regular
tiling.

The use of augmentations has not proven to benefit the results on
the ’Aphid dataset’, as can be concluded from table 11. Further
experiments must show if there are other augmentations than the ones
discussed in the paper, that do benefit the results. More test results on
this part would especially be useful since augmentations can counter
the disadvantages of a small dataset.

Concerning the main hyperparameters, a learning rate of 0.001 and
a scheduler with patience of 20 epochs have been shown to give the
best results in this setting (table 9). A tile size of 640x640 pixels is
preferred over a tile size of 320x320 pixels (table 11). During
pretraining images of the same size have been used. Using a tile size
with the same amount of pixels as during the pretraining of the
models could be an explanation for better results.

The experiments done regarding the class probabilities in positive
tiling, have shown that a balance between the number of objects per
class results in faster training (table 13). Because in the remaining
part of the tile, around the chosen aphid or non-aphid, there could be
more aphids or non-aphids, it is difficult to perfectly balance the
number of objects seen per class.

A solution could be considered which would perfectly balance the
classes. Taken into account has to be that the process of tiling would
still have to be random. A more obvious solution could be to create a
model with only one class for aphids.

Table 13: Results experiment 4. Pre A = Precision Aphids, Rec A =
Recall Aphids, F1 A = F1-score Aphids.

Model Epochs Probability Prec A Rec A F1 A
YOLOv5s 100 50/50 0.356 0.451 0.398

100 100/0 0.358 0.495 0.415
400 50/50 0.430 0.418 0.424
400 100/0 0.333 0.574 0.421

The model seems to do some false predictions on parts of insects
that are stuck to the yellow sticky plates. Furthermore, regarding the
’Aphids & Other Insects Dataset’ there is still room for improvement.
Attempts have been done in improving the annotations for the testing
data. Due to time restrictions, no further improvements to the dataset
have been done. Especially in the data for training, aphids are
annotated as non-aphids and the other way around.

5.2 Conclusion
This section answers the research questions. The conclusion states
the main highlights of the results and relates them to the goals of the
study.

This study proposes a single-stage object detection model as a
solution to find aphids on yellow sticky plates. Primary, the
sub-questions are answered, after which the answer to the main
research question is stated.

5.2.1 What would specifically benefit the detection of tiny
objects?

For the detection of tiny objects images with a high resolution have
been used. Processing high-resolution images takes a lot of
computing power. Hardware limitations make it impossible to
process full images. For this reason, the model crops tiles from the
images which are then processed. The use of high-resolution images
with image tiling has given promising results. More complex
algorithms seem to outperform less complex algorithms.

5.2.2 Would an imbalanced dataset influence the detection
results per class?

Around farms, in general, there are a lot more insects than aphids. The
collected yellow sticky plates have approximately ten times as many
insects on them as aphids. This creates a natural imbalance in the
dataset.

The probability of the network creating a tile with either an aphid
or a non-aphid affects the ratio between classes. An imbalanced
dataset is now autonomously balanced towards a desired ratio. A
higher probability of a class has not been shown to increase results
for this class. The higher probability does result in faster training for
the specific class.

5.2.3 How could a single-stage object detection and
qualification model be used to robustly find aphids on
yellow sticky plates?

An end-to-end method to find aphids on yellow sticky plates has been
established for use by farmers. A network of a YOLOv5-model in
combination with image tiling has been shown to deliver optimistic
results but not yet on a level that can be put in to use in the field.
However, the feasibility of detecting aphids with the proposed methods
has been shown.

The overall best result achieved in the study is an F1-score on
aphids of 0.525. The model has a precision on aphids of 0.473, a
recall on aphids of 0.588, and an overall F1-score of 0.458. The
indication of the number of aphids in a field of crops can help farmers
in their decision-making around the use of pesticides.



5.3 Future Work
This segment discusses the possibilities for future research after this
study. The next steps are discussed in direct relation to this study.
After which, potential future studies are considered.

5.3.1 Future work regarding this study
For future work, improving the data going into the model should be
considered. A bigger training dataset is desirable. The dataset could
be extended with more images or configurations for augmentations
could be examined to give the idea of a larger dataset.

The annotations of the ’Aphids & Other Insects Dataset’ should be
considered enhancing. Instead of doing this manually, the network
could also return images of objects the network is not certain about.

Due to time restrictions, no further improvements to the dataset
have been done. Especially in the data for training, there is room for
improvement. Some aphids are now still annotated as non-aphids and
the other way around.

5.3.2 Potential future studies
Future research could be done on single-stage object detection. A
model could be considered with only a class for aphids. In this study,
the non-aphids class does not seem to increase performance.
Furthermore, where on the model with two classes, the loss is a
combined value of the aphid and non-aphid classes, is the loss in case
of a one-class model only calculated of aphids.

In this study, different kinds of aphids are all considered to fit into
one class. Some kinds of aphids differ from each other in color, shape,
and size, potential research could be done in categorizing the aphids
per kind.

Parallel to this study, a system is being developed, able to identify
and analyze the aphid population with an in-flight setup at a seed
potato farm. A test station has to be designed that is able to collect
necessary data, such as images of videos, and send it to a remote
location. From where the data can be accessed and processed by the
software, specifically designed to regulate the number of pesticides
used per region. The invented system will be designed in such a way
it could be used to identify other insect species as well.
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