
Mid-air aphid detection:
A comparison between state of the art object detectors

NHL Stenden Lectoraat in Computer Vision & Data Science

Rick Scheper, Maurits Peereboom
Supervisors: Klaas Dijkstra, Lucas Ramos

Abstract—The potato virus Y can infect potatoes and heavily impact the strong position Dutch potato farmers have on the market.
Because this virus gets carried by aphids, the usage of pesticides is crucial in order to prevent the food waste of hundreds of potatoes.
Overuse of pesticides can strongly impact the environment. Which is why they can only be used when it is proven that aphids are
present. Determining this will prove difficult: the insects are relatively small and can be mistaken for fruit flies. Computer vision may
offer a solution here. Within this research, two detector models, YOLOv8 and RetinaNet are trained on a dataset containing winged
aphids, wingless aphids and 2 kinds of fruit flies in order to determine which one is the best in detecting aphids in an early state as
possible. Not only will these detectors be trained to be able to detect aphids from other insects, but also to determine exactly what
the currently viewed insect is. The latter proves to be more difficult for the models with YOLOv8 giving a best F1 score of 0.84 and
RetinaNet 0.53. As opposed to just determining an aphid from a non-aphid with F1 scores of 0.90 and 0.76. With this data, it can be
determined that YOLOv8 is the better model for detecting aphids.

Index Terms—YOLOv8, RetinaNet, Aphids, Agriculture, Environment, Tiling, F1 score

1 INTRODUCTION

The Dutch export 800.000 tons of seed potatos yearly to more than 70
countries and have a marketshare of roughly 60 percent with a value
worth of almost half a billion euro’s. This strong export position is
due to a high quality and health of the potato seeds. However, in the
last five years there has been a rise in the total affected crops infected
with Potato virus Y (PVY)[11]. This reduces the value of the product
and results in a lower profit. To maintain the strong economic
position the dutch have on these potato seeds a new method is
required to stop the spread of PVY.

When a potato plant gets PVY, it will develop dark spots on its
leafs which will eventually fall of, leaving a bare stem with muttled
leaves at the top [9]. This greatly affects the yield of potato’s which in
turn threatens the strong economic position of the Dutch export in
seed potato’s.

PVY is spread by insects, particularly aphids, from infected to
healthy plants. This assumption is supported by the direct
relationship between the number of aphids and the percentage of the
infected crops[5]. The detection of these aphids is really time
consuming and needs to be made more efficient. As of now, the
aphids get detected by putting a sticky yellow plate in the field. The
aphids are attracted by the color and will get trapped once they land
on the plate. They are then counted manually which is used to
determine the amount of pesticides needed for the entire field.

This process is very slow and prone to human error; therefore,

Rick Scheper is an Applied mathematics student at the NHL Stenden
University of Applied Sciences, E-mail:
rick.scheper@student.nhlstenden.nl.

Maurits Peereboom is a Software Engineer student at the NHL Stenden
University of Applied Sciences, E-mail:
maurits.peereboom@student.nhlstenden.com.

Klaas Dijkstra is a Professor of Applied sciences at the NHL Stenden
Lectoraat in Computer Vision & Data Science, E-mail:
klaas.dijkstra@nhlstenden.com.

Lucas Ramos is a researcher at the NHL Stenden Lectoraat in Computer
Vision & Data Science, E-mail: lucas.ramos@nhlstenden.com.

computer vision may be used to automate it. In a previous study,
computer vision was implemented to automate the detection of aphids
[12]. The object detector used in that study was trained to identify
insects and aphids on a yellow plate. However, for this research, a
different dataset containing aphids in flight will be utilized. This
dataset better simulates real-world scenarios, where aphids are not
stuck on a yellow sticky plate but flying in the field. Hence, it is
crucial to investigate whether an object detector is capable of
detecting these aphids in flight.

To detect these aphids in flight, an object detector will be used.
Because there are a lot of different detectors, each with their own
advantages and disadvantages, it is required to pick a selection of
those. Part of this research will be determining which of these
systems within the selection is the most desirable within the current
stage of the aphid-detection project.

In short, to achieve minimal damage to the environment, while
increasing the export of the potato harvest, confirming presence of
aphids in an early stage is required. Which is why an object-detector,
more advanced than the one used in the previous research [12] will be
used. Because only one of all the available models will be used,
finding the advantages and disadvantages of them is also necessary.
The main research question is:

How accurate is the detection of aphids in flight, using computer
vision?

In order to answer this question, research for the following
sub-questions is necessary:

• Which object detection model is the most fitting?

• What is the difference in performance when more classes are
added?

2 STATE OF THE ART

The aim of this study is to determine the accuracy of computer
vision-based detection of aphids in flight. The state of the art related
to this question will be reviewed in previous research. Section 2.1.1
will provide a detailed analysis of the YOLOV8 object detector and
assess its performance. Section 2.1.2 will focus on the RetinaNet
object detector, explaining how it works and summarizing previous



studies conducted using the detector. 2.2 looks at the previous
research done on this subject and section 2.3 will provide extra
information of object detection on insects in the field.

2.1 Object detection model candidates
After investigating different candidates, the selection of object
detection models has come down to RetinaNet [RetinaNet] and
YOLOv8 [4]. These are the state of the art object detectors and will
therefore be used. The latter being the advanced version of the object
detector used within the previous stage of the aphid-detection project:
YOLOv5. it is also interesting to see whether YOLOv8 performs
indeed better than it is predecessor. Therefore YOLOv5 will also be
used in the experiments.

2.1.1 Object detection with YOLOV8
YOLOV8 is the latest object detector based on the YOLO framework.
It is based on the DarkNet architecture [7]. Although this is a new
version the frameworks of all the YOLO versions are the same. The
main difference is that the YOLOv8 does not use anchors anymore.
In previous versions of YOLO anchors were used and these were hard
to compute [13]. YOLOv8 however computes the direct center of an
object instead of the offset from a known bounding box. This step
leads in a smaller computing time. The object detector is a single
stage method that performs the detection and the classification of an
object at the same time. There is a lot of research done with the YOLO
framework and all have provided a good performance. One study for
example trained YOLOv5 on a dataset consisting of more than 7000
images of insects [10]. Here YOLOv5 achieved a precision and recall
of more than 90 for various Yolo models.

2.1.2 Object detection with RetinaNet
When it comes to object detection models, there is a difference
between a one-stage and a two stage model: whilst one stage models
can be faster and more simple, two stage models give better results,
due to their higher accuracy. In order to achieve this, RetinaNet
utilizes a focal loss function. The idea behind this function is that it
reshapes the standard cross entropy loss. By doing this operation, the
source lacking accuracy of one stage models is mitigated: the extreme
foreground-background class imbalance, which occurs while training
said models [15]. Even though this sounds promising, it has to be
stated that the YOLOv8 model is more recent than the RetinaNet
model. Previous research on the detection of different pills,
concluded with RetinaNet having good accuracy, but slow detection
speed, in comparison with YOLOv3. (The latter having less accuracy,
but higher detection speed.) [8] This is important to remember at
experimenting, because the model needs to detect flying aphids.

2.2 Previous research
In [12], yellow sticky plates of 250 by 250 mm have been used to trap
aphids, among other insects, in order to train a detection model. This
detection model was YOLOv5, a previous version of YOLOv8. In
order to achieve desirable results, [12] has used tiling on the training,
validating and testing batch of images. This means slicing the high
resolution input image into a bunch of smaller cutouts. This way, the
model can look at the high detail data, without the cost of computing
power that comes with processing high resolution images. For the
current stage of this project, high resolution input is used as well and
tiling needs to be taken into consideration.

2.3 Previous research with insects in the field
Within this research, computervision used to detect insects within a
lab environment. Because it is crucial to detect the aphids as early as
possible, future research may use a dataset which consists not only of
aphids on potato plants. But, more importantly, also of aphids in their
flying state outside on the farm fields. Which is why it is required for
the model to detect aphids mid-flight. Previous research has been
performed on the matter. [3] [2] [14] And there are two notable
factors which need to be taken into account for this current

experiment. First of all, it seems that computer vision on detection of
insects is very efficient. Especially in the case of convulational neural
networks, where the model produced a 90% accuracy on the provided
insect dataset [14]. However, all of the used datasets within the
aforementioned research does not completely match with the goal of
this research. This is because these dataset contain images of plants
with bugs on top. The model which needs to be trained has aphids in
flight in front of a yellow plate. With the right camera and image
tiling, a process in which one big picture gets divided in smaller
pictures, allowing for tiny details to become visible, the model
should, in theory, achieve the desired result of detecting aphids in
mid-air.

3 MATERIALS AND METHODS

This section includes the presentation of the study requirements and
the specific techniques that have been utilized. The acquisition of the
dataset ’mixWinglessGreenpeachFruit’ is discussed in 3.1. In section
3.2, the definition of the ground truth and the method of data division
are elaborated. Section 3.3 covers the discussion of data
pre-processing, while section 3.4 focuses on the utilization of object
detection models. The evaluation metrics used in this research are
shown in section 3.5.

3.1 Dataset acquisition

it is important in this research to detect aphids in their natural state
rather than on yellow sticky plates [12]. Therefore, a new dataset
comprising aphids and other insects in their natural state was
collected. these aphids were dropped into a large wooden box and
would pass a motion sensor. When a aphid was noticed by the sensor
a camera would take a picture of the aphid. Many pictures were taken
without any aphids present. The camera setup is shown in Figure 1.

Fig. 1. Camera setup for data acquisition

With this setup, it is possible to capture these green peach aphids
while they were spreading their wings. These images where taken
in a controlled environment using a U3-3990SE Rev.1.2 camera. the
specifications of this camera are shown in table 1.

Component Specifications
Camera Sony IMX541

Camera lens KOWA LM16FC
Camera resolution 4512 x 4512

Sensor 1.1” CMOS

Table 1. Camera specifications.



3.2 Ground truth, annotations, and dataset division
3.2.1 Ground truth
The ground truth was collected by annotating the images using
annotation software. This dataset contains aphids, virillis, and
melanogasters. The location of these aphids is then annotated by
surrounding bounding boxes around their bodies. After the
annotations are complete, the combination of the photos, the class
names, and the bounding boxes is considered the ground truth. This
ground truth is then used to train the object detectors. Figure two
shows a winged aphid with its bounding boxes.

Fig. 2. A winged aphid with its corresponding bounding boxes

3.2.2 difference in annotation
This research we used two different types of annotations depending
on the experiments. As mentioned, the dataset consists of aphids and
non-aphids. In the first set of experiments, the images were annotated
accordingly. To introduce additional complexity to the model, the
following experiments have utilized more elaborate annotations.
Instead of having two classes, five different classes have been created
with the following labels: ’Aphid-winged,’ ’Aphid wingless,’
’Aphid dropped,’ ’Virillis,’ and ’Melanogaster.’ The subsequent
experiments assessed whether this increased complexity affects the
model’s performance.

3.2.3 Dataset division
The combination of pictures and corresponding annotations resulted
in the dataset: mix wingless greenpeach fruit, which consists of 727
images. By dividing this dataset into train, test, and validation sets,
the network produces a model that has not seen all the data. If the
validation and test sets are also used for training, the model may
become overtrained, resulting in worse performance on new data.
This increases the changes the model will generalize to new, unseen
data.
The amount of images for the train, test and validation sets can be
found in table 2

Train Validation Test
556 62 109

Table 2. dataset splits

3.3 Tiling
To ensure that the details of the aphids were captured by the camera,
the images were taken at a high resolution. The images in the dataset
have a width and height of 4512 pixels. However, if these images
were directly fed to the model, it would require a significant amount
of computing power and time for processing during training. The
testing process will also require a significant amount of computing
power. Therefore, it is necessary to tile these images to only include

the regions with aphids present. Tiling involves cutting smaller
portions of the image without compromising its resolution, ensuring
that all the details of the aphids remain visible. In this study, the tile
size is set at 416x416 pixels.

3.3.1 Tiling approach
In this experiment, tiling was not implemented inside the object
detector. This means the images were tiled before the training process
and saved on the device. The object detector can then access the tiled
images and train on them. It is important to ensure that the training,
validation, and testing sets contain the right amount of information.
To achieve this, two different approaches were used.
For the training set, images were tiled using a random positive tiler.
This means that the tiler would only extract the parts of an image that
contain aphids. This way, the model can effectively learn whether an
aphid was present in the image.
The validation set was tiled in the same manner as the training set.
However, it also needed to include some background images since the
testing set consists of 90% background images. Therefore, a portion
of those background images was transferred to the validation set
For the test set, it is crucial to include images without aphids.
Otherwise, it will not be clear how the model performs when
presented with negative data. To address this, a different tiling
approach was necessary. A fixed tiler was used for the test set, which
completely tiled all the images into 121 416x416 chunks.

3.4 Object detectors
3.4.1 YOLOv8
There are various models that can be used within YOLOv8, namely:
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x6. The
differences between these models is mainly the size of the backbone
and the number of parameters. A model with a larger backbone may
potentially lead to a better result, but it will take longer to achieve this
result. It is therefore important to consider the tradeoff between
model complexity and computing time. Because the dataset is
relatively small the models this research will be using are: YOLOv8n,
YOLOv8s and YOLOv8m. the other models are too complex and
could likely start overfitting the data. This means the model could
memorize the training set instead of learning what an aphid looks
like.

3.4.2 RetinaNet
RetinaNet utilizes a Resnet backbone [15]. ResNet depths of 18, 34,
50, 101 and 152 being currently available. Note that in [15], a 101
backbone is used. During the experiments, different models with
different backbones will be tested. It is important to mention that
deeper models take more memory and time to train. The used
optimizer is the Adam model. It will use a learning rate of 0.0001.
And the employed scheduler will have a patience of 20.

3.4.3 YOLOv5
Besides the results within the project that YOLOv8 will produce, it is
also interesting to see whether these results are better than its
predecessor. Therefore the same experiments that are conducted with
YOLOv8 will also be conducted with YOLOv5. In this comparison it
will become clear if YOLOv8 is indeed faster and more accurate. The
experiments will be done using a adjusted YOLOv5 model. This
model was adjusted in such a way that it is compatible with YOLOv8.
This information is obtained from a github page of YOLOv8 [6].

3.5 Train, test, and validation
3.5.1 Training and validation on the data
Before the training process, the high-resolution input is randomly
tiled to create input for the training process. This random tiling does
make sure that each tile has an insect. For validation, fixed tiling is
applied, to check if the model can also detect tiles with only
background. Following this, the model will iterate over this input. It



needs to do this a set number of times. Every epoch the model will
validate over the validation input. At the end of validation, it is also
decided if the model gets saved or not. This is done if the model
shows improved results during validation. The model might actually
give less accurate results on validating, due to a process called
overtraining (see 3.2.2). All trained models have pre-trained weights
trained on the coco-dataset [1].

3.5.2 Testing on the data
For the testing process, fixed tiling is applied. Furthermore, the
testing input needs to have the same measurements, tile size,
background and class types as the training and validation input. The
output of the testing process should consist of the reconstructed
image, with the predictions made by the model, as well as the ground
truth.
One of the challenges during fixed tilling was that sometimes the
same object of interest (insect) would be split between two different
tiles. To understand this problem, firstly consider that each annotation
and prediction is a box. This box makes sure that the object is
completely inside it. It is the model’s goal to get a box as closely as
the annotation box. Because for fixed tiling, the objects are not taken
into account, images will appear in which the object is sliced in half.
The annotation is also sliced in half, but it will still take the other half
into account. The model does not have that information, so it will not.
This is why an intersection over union threshold of 0.1 is used, when
calculating the statistics.

4 EXPERIMENTS & RESULTS

This section will cover the different experiments that were conducted.
In section 4.1 the results of YOLOv8 and YOLOv5 aphid vs other
insects are shown. Section 4.2 will show the results of YOLOv8 and
YOLOv5 with classes: ’aphid winged’, ’aphid dropped’,
’aphid wingless’, ’virilis’ , ’melanogaster’. Section 4.3 highlights
how different ResNet backbones are trained on the dataset with 2
classes and what their performance is. In section 4.4, the same kind of
experiments will be done but on the aformentioned 5 classes dataset.

4.1 Experiment 1: YOLOv8 with two classes.
This experiment involves training several YOLO models with
different backbones. The models used in this experiment are the nano
(n), small (s), and medium (m) variations of YOLOV8. The results
are shown in Table 3. These experiments are performed on a dataset
were two classes are used, as explained in section 3.2.2. It is
interesting to see that YOLOv8 clearly outperforms YOLOv5 when
the recall is considered. YOLOv8 detects a lot more than its
predecessor. It is also remarkable that the nano variant of YOLOv8
has the best F1-score. The more complex and larger models do not
improve on this metric. The only thing these larger models do better
is in there average precision. Figure three shows the confusion matrix
of the YOLOv8n model. This confusion matrix shows that 82 % of
all the insects in the test set are detected and are assigned the correct
label. 18 % of the insects in these background are not detected and
were treated as if they were background.

4.2 Experiment 2: different YOLO models on 5 classes
In the second part of the experiments YOLOv8 and YOLOv5 were
trained on a dataset with five classes explained in section 3.2.2. The
results of these experiments can be found in table 3. It is interesting to
see that when the YOLOv5 models are compared to their respective
YOLOv8 counterpart, YOLOv5 outperforms YOLOv8, except the
medium variant of the model provides better results. It is also worth
noting that the precision of all the models (except for YOLOv8n) is
very high. Whenever the model detects something, it is almost always
correct. The problem with these models lies in their recall. The
models find it difficult to detect these aphids, which results in many
undetected insects. This can be seen in figure four which shows the
confusion matrix of the YOLOv8s model. for each class the model
detects the insects in roughly 70 % of the cases. The other 30 % are
unnoticed and mostly gets treated as if it were background.

Fig. 3. Confusion matrix for YOLOv8s with two classes

Fig. 4. Confusion matrix for YOLOv8s with five classes

4.3 Experiment 3: RetinaNet with two classes

As aforementioned, ResNet backbones of 18, 34, 50, 101 and 152 are
available. Within this experiment, for each different backbone, a
RetinaNet has been trained on the same dataset that was used in
experiment 1, to determine which backbone delivers the most desired
results. They have been trained on a maximum of 15 epochs, because
earlier experiments have shown that the validation loss reaches its
lowest point around there. The learning rate is 0.0001 and the batch
size is 1. All models have been pretrained beforehand. For the
intersection over union threshold within the predict function of the
model, it has been decided that 0.5 is going to be used as well as 0.05.
A threshold of 0.5 gives a nice balance of the precision and recall,
while 0.05 gives more recall. More recall is desired for the end-result,
because it is important for the farmers to detect aphids. A false
positive is therefore more desirable than a false negative. The results
of these models are shown in table four. Note that the results shown is
the mean of all the statistics obtained for each class. Where the f1
score = 2∗ (precision∗ recall)/(precision+ recall)

A RetinaNet with a ResNet backbone of 18 performs the best on
this dataset. It has a precision of 0.65, a MAP with the same value
and a F1 score of 0.76. Only its precission of 0.91 is outclassed by the



Table 3. Performance Metrics of the YOLO Models
Model Precision Recall MAP-95% F1-score

two classes
YOLOv5n 0.90 0.76 0.75 0.81
YOLOv8n 0.98 0.84 0.80 0.90
YOLOv5s 0.93 0.71 0.79 0.81
YOLOv8s 0.98 0.82 0.83 0.89
YOLOv5m 0.96 0.72 0.82 0.83
YOLOv8m 0.98 0.82 0.89 0.89
five classes
YOLOv5n 0.92 0.76 0.79 0.83
YOLOv8n 0.42 0.73 0.87 0.54
YOLOv5s 0.98 0.75 0.83 0.85
YOLOv8s 0.87 0.73 0.86 0.79
YOLOv5m 0.98 0.69 0.83 0.81
YOLOv8m 0.99 0.73 0.89 0.84

Table 4. Results for RetinaNet with different ResNet backbones, on a
dataset with 2 classes, for two different IoU thresholds

Model Precision Recall MAP F1 score

IoU threshold = 0.5
ResNet-18 0.91 0.65 0.65 0.76
ResNet-34 0.94 0.59 0.59 0.73
ResNet-50 0.82 0.62 0.61 0.71

ResNet-101 0.85 0.64 0.63 0.73
ResNet-152 0.82 0.63 0.62 0.71

IoU threshold = 0.05
ResNet-18 0.70 0.74 0.71 0.72
ResNet-34 0.63 0.70 0.67 0.66
ResNet-50 0.61 0.73 0.69 0.66

ResNet-101 0.59 0.73 0.70 0.65
ResNet-152 0.63 0.71 0.67 0.67

ResNet-34 model, which has a result of 0.94. On the IoU threshold of
0.05, the ResNet-18 model gives the best results on all criteria. More
shallow backbones outperforming deep backbones, is most likely the
case due to the fact that this is a dataset with only two classes. Deeper
backbones fit better with more complex datasets. (Like the COCO
dataset which has 80 different classes.)

4.4 Experiment 4: RetinaNet with five classes
For this experiment, every ResNet model has been trained on the
same dataset as the one used in experiment 2. Like experiment 3, a
maximum of 15 epochs was used and the models have been
pretrained. See table five for the results.

It seems like that especially the more shallow models seem to
perform well on this dataset. Though the ResNet101 model with a
threshold of 0.5 seems to have the biggest F1 score, due to an
increase in precision. However, if a model with the highest recall is
more desirable, the ResNet34 model, with a threshold of 0.05 will be
the model of choice.

5 DISCUSSION, CONCLUSION & FUTURE WORK

5.1 Discussion
The results of the performed experiments suggest that it is indeed
possible to detect aphids in flight. The precision of these model lies
around 90 % or higher depending on the model. Because two
separate experiments were conducted per object detector, it also
became clear that there are some drawbacks when the object detector
needs to differentiate between aphids with wings and those without.

Table 5. Results for RetinaNet with different ResNet backbones, on the
dataset with 5 classes, for two different IoU thresholds

Model Precision Recall MAP F1 score

IoU threshold = 0.5
ResNet-18 0.78 0.39 0.38 0.52
ResNet-34 0.70 0.43 0.39 0.53
ResNet-50 0.58 0.37 0.34 0.45

ResNet-101 0.74 0.42 0.38 0.53
ResNet-152 0.57 0.35 0.30 0.44

IoU threshold = 0.05
ResNet-18 0.33 0.49 0.43 0.40
ResNet-34 0.31 0.57 0.46 0.40
ResNet-50 0.25 0.54 0.39 0.34

ResNet-101 0.29 0.56 0.45 0.39
ResNet-152 0.31 0.48 0.36 0.38

The models that came out of these experiments can tell winged
aphids apart from their younger counterparts; however, this comes
with a cost in their recall. When the two confusion matrices in figure
three and figure four are compared the big difference lies in the
background class. For the models that contain five classes the number
of insects that are not detected is higher than the models with two
classes. This results in a lower recall for the models with five classes.

There is a complexity with the dataset with 5 classes, though. A
difference is made between the classes 0 and 1, those being
aphid dropped and aphid winged. The actual difference between
these classes is small: both are winged aphids, but aphid dropped are
winged aphids that refuse to fly. In contrast to aphid winged which
are winged aphids which are flying. In practice, aphid dropped is
rarely encountered and due to their similarity to aphid winged, the
model confuses the two a lot. If these classes are counted as one
class, the 5 classes dataset (then the 4 classes dataset) will surely give
better results, closer to the 2-classes dataset.

This does show that with a relatively small dataset, the object
detectors do a very good job of detecting aphids. The object detector
that works the best in this case is YOLOv8. In both experiments, it is
clear to see that YOLOv8 outperforms RetinaNet, and it also
produces a model much faster.

Although these experiments produce good results with a relatively
small dataset, it remains one of the shortcomings of this research. The
main issue in our dataset lies in the differentiation between the
classes ’aphid dropped’ and ’aphid winged.’ Among the total of 212
mature aphids that have grown wings, 65 of them are incorrectly
labeled as ’aphid dropped.’ These aphids are both mature and have
sprouted wings, but the dropped aphids do not display their wings.

5.2 Conclusion
This research has conducted various experiments on two different
object detectors. Interpreting the results of all four experiments leads
to the result that YOLOv8 is the better object detector for detecting
aphids. It achieves the highest scores on all metrics, with an F1 score
increase of 0.15 on the 2-classes dataset and an increase of 0.3 on
the 5-classes dataset, and also requires considerably less time for
training.

Furthermore, the experiments provide insights into the differences
in classes. When comparing the metrics of the models with two classes
to the model with five classes, it is clear to see that the model with 2
classes has much better recall. It detects more aphids, which leads to
more reliable results when these models are used in the field.



5.3 Future Work
All used datasets have been acquired within a lab environment. The
next step in this research requires a dataset taken of aphids within their
natural habitat. This may prove a challenge, because getting pictures
of aphids outside is more time consuming than in a lab. Not only that,
this dataset can be only acquired within a very small time frame per
year. An obvious solution is to use a training and validation dataset
of lab photo’s, while testing is done on natural photo’s. The biggest
difference of this dataset is the background colour. More research to a
solution for problems this may cause might be required. An example
is: more augmentations, that manipulate the color of the image, or an
extra step in the detector that converts each image to gray-scale. This
way, a dataset usable for training on natural data can be acquired more
easily.

ACKNOWLEDGEMENTS

This project is financially supported by ELFPO and performed within
the POP3+ Fryslân project Innovatie luizendetectie.



REFERENCES

[1] URL: https://cocodataset.org/#home.

[2] Xie Chengjun et al. Automatic classification for field crop
insects via multiple-task sparse representation and
multiple-kernel learning. Research paper.

[3] Xia Denan et al. Insect Detection and Classification Based on
an Improved Convolutional Neural Network. URL: https://
www.mdpi.com/1424-8220/18/12/4169.

[4] Ayush Chaurasia Glenn Jocher. URL:
https://docs.ultralytics.com.

[5] ing. dr. ing. and Verbeek Martin. Virus- en vectorbeheersing in
pootaardappelen. 2019. URL:
https : / / www . wur . nl / nl / onderzoek -
resultaten / onderzoeksprojecten -
lnv/soorten-onderzoek/kennisonline/virus-
en - vectorbeheersing - in -
pootaardappelen.html.

[6] Glenn Jocher. URL: hhttps : / / github . com /
ultralytics/ultralytics/issues/1114.

[7] Redmon Joseph et al. “You Only Look Once: Unified,
Real-Time Object Detection”. In: (2016).

[8] Tan Lu et al. Comparison of RetinaNet, SSD, and YOLO v3 for
real-time pill identifcation. URL:
https : / / link . springer . com / article / 10 .
1186/s12911-021-01691-8.

[9] Evans-Goldner Lynn. potato virus y strains. 2020. URL:
https : / / www . aphis . usda . gov / aphis /
ourfocus / planthealth / plant - pest - and -
disease - programs / pests - and -
diseases/nematode/potato/pvy.

[10] Shuyi Ma et al. “Deep Learning Based Detector YOLOv5 for
Identifying Insect Pests”. In: Applied Sciences (2021).

[11] Projectplan POP3 profincie fryslân maatregel.

[12] Klut Sander. Detection of Aphids on Sticky Plates using
YOLOv5 with Image Tiling. Research paper.

[13] Jacob Solawetz. What is YOLOv8? The Ultimate Guide. URL:
https://blog.roboflow.com/whats-new-in-
yolov8/.

[14] Kasinathan Thenmozhi, Singaraju Dakshayani, and
Uyyala Srinivasulu Reddy. Insect classification and detection
in field crops using modern machine learning techniques.
Research paper.

[15] Lin Tsung-Yi et al. Focal Loss for Dense Object Detection.
URL:
https://arxiv.org/pdf/1708.02002v2.pdf.


