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Abstract—Building inspection is essential for assessing the technical performance of buildings and planning maintenance actions to
improve their condition and functionality. Traditional manual inspection methods are time-consuming, costly, and hazardous. Utilizing
anomaly detection as a computer vision technique can automate the building inspection process. However, automated building
inspection faces challenges due to the diverse conditions, materials, and maintenance histories of buildings, as well as limitations in
imaging quality and component identification. This paper focuses on the automatic identification of defective construction components,
specifically roofs and window casings, using anomaly detection. A dataset of drone images from buildings in the Netherlands was
generated, providing diverse perspectives and a large amount of training data. The research aims to evaluate the effectiveness of
anomaly detection in identifying defects in roofs and window casings, explore the factors influencing accuracy and efficiency, and
identify limitations and challenges in real-world scenarios. The PatchCore anomaly detection model, which uses a patch-based
approach, is employed as the primary model in this research. Different backbone networks, such as WideResNet50, DeepLabv3+,
and ResNet50, and different feature layers of them were investigated for feature extraction. The best performance on the Casings
dataset was achieved by using the WideResNet50 backbone with layers 2 and 3, and despite the limited number of data and the
diversity in casing types, increasing the number of properly labeled images could further improve the model’s performance. On the
other hand, the model’s performance on the Roof dataset was generally unsatisfactory. The tiled roof dataset consistently showed
improved results, demonstrating the model’s ability to identify nominal and defective roof tiles with more data and uniformity. The
retrained ResNet50 backbone architecture outperformed the baseline performance in the PatchCore anomaly detection model.

Index Terms—Anomaly Detection, Defect Detection, Automatic Building Inspection, PatchCore Anomaly Detection, Computer Vision,
Deep Learning

1 INTRODUCTION

Building inspection plays a crucial role in technical performance
assessment of a building for planning maintenance actions to enhance
its condition and functionality [1]. One of the key tasks in building
inspection is the identification of building defects, which are
deviations from the normal or expected condition of a building that
can potentially impact its structural integrity, comfort, and energy
efficiency. The detection of building defects is traditionally
performed through manual inspection, which is time-consuming,
costly, and dangerous, particularly for extensive or tall structures [2].

By employing anomaly detection as a computer vision technique,
the building inspection process can be automated, reducing the need
for manual inspection. It could enable building owners and managers
to plan maintenance actions more effectively, enhancing the condition
and functionality of their buildings. Anomaly detection is the process
of identifying events or data points that deviate from the majority of
regular patterns in a dataset [3]. In the context of building defects,
anomaly detection can be used to identify and classify deviations from
the normal or expected condition of a building.

Automated building inspection using anomaly detection presents
several challenges. Buildings can vary greatly in their condition,
construction materials, and maintenance history, which makes it
challenging to develop a universal approach to defect identification
and classification. Building defects can take many forms, and some
may be more challenging to detect and classify than others, requiring
sophisticated techniques for automated inspection. Additionally,
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imaging can be limited by factors such as image quality, angle, and
the challenge of identifying distinct building components within a
single image, which also adds complexity to anomaly detection and
could require specific techniques and models tailored to each
component.

This study aims to develop an approach that can be used in industry
for the automatic identification of defective construction components,
based on a dataset generated by drone imaging from many buildings
in different locations in the Netherlands. The focus of this research is
developing an anomaly detection approach for improving the metrics
of identifying defects in roofs and window casings. We selected roofs
and windows for our dataset due to their abundance and the availability
of a substantial number of annotated defects. The annotations for both
the components and defects were meticulously carried out by domain
specialists.

To achieve this, we have explored the effectiveness of anomaly
detection in a real-world setting and evaluated its metrics in
identifying defects in roofs and window casings. This study addresses
the challenges of dataset diversity and annotation accuracy in
building inspection and defect detection. It adapts the PatchCore
model, a state-of-the-art anomaly detection model, and explores
leveraging alternative backbone networks, retraining them for
classification and segmentation, and utilizing deeper layers of
features. The aim is to improve performance in detecting building
defects and enhance reliability.

• What is the performance of anomaly detection techniques in
identifying defects in roofs and window casings?

• What are the key factors influencing accuracy and efficiency?

• What are the limitations and challenges associated with using
anomaly detection techniques for identifying defects in roofs and
window casings in real-world scenarios?



2 RELATED WORK

In recent years, deep learning and computer vision have been
extensively employed to develop new methods for detecting and
localizing surface defects in building components and industrial
products.

Some approaches are based on different types of Convolutional
Neural Networks (CNNs). Pathak et al. [4] utilized 2D and 3D data to
train models for detecting and localizing damages. Their proposed
method employed various Faster-RCNN configurations, such as
Resnet-101, Inception V2, Inception-Resnet, Resnet-FPN, and Nas,
for damage detection in 3D models of a UNESCO World Heritage
site in India. The results demonstrated the robustness of the proposed
approach over image data pertaining to architectural styles of heritage
monuments. Nasrollahi et al. [5] proposed a method for detecting
concrete surface defects using a Deep Neural Network (DNN) based
on LiDAR scanning. They employed PointNet, a CNN, to analyze 3D
point sets of bridge surfaces and successfully detect surface defects.
Staar et al. [6] proposed the use of CNNs for automated optical
quality inspection in industrial applications. Their approach involved
employing deep metric learning with triplet networks to detect
anomalies, even for new surface/defect classes not included in the
training data. The average area under the curve (AUC) metric for
different classes and experiments was around 0.8, indicating
promising results.

Furthermore, Generative Adversarial Networks (GANs) have been
widely used in anomaly detection problems. Hong et al. [7] proposed
a novel method for upsampling low-density point clouds, which has
applications in crack detection, depth calculation, and segmentation
tasks. By combining point cloud data with corresponding 2D images
of the object, their GAN architecture generated new, high-density
point clouds, leading to improved accuracy in crack detection, depth
calculation, and segmentation compared to previous methods.

Transformer-based networks have also been employed for anomaly
detection. Researchers have proposed defect-aware
Transformer-based networks for the surface of products in
manufacturing defect detection for industrial quality control. These
networks utilize a Transformer-based encoder architecture,
comprising multiple Transformer layers, to address the limitations of
CNNs in capturing long-range dependencies necessary for detecting
tiny and irregular defects. The integration of Defect-aware modules
equips the models with the ability to perceive and capture geometric
and characteristic features of defects. Additionally, Global Positional
Encoding (GPE) provides crucial positional information, leading to
improved model performance and increased adaptability to varying
defect patterns [8]. Another proposed approach includes a two-stage
end-to-end Transformer-based encoder-decoder for surface defect
detection in industrial quality control. This approach demonstrates
effectiveness and can be trained with a relatively small number of
samples, making it suitable for industrial applications with limited
sample sizes [9].

Siamese networks have been utilized to learn similarity metrics
between input samples. Takimoto et al. [10] proposed an anomaly
detection method using a Siamese network with an attention
mechanism and Attention Branch Loss (ABL) to address the lack of
sufficient abnormal data for training deep-learning models in
practical applications. Experimental results showed the effectiveness
of the proposed method, even with limited abnormal data.

Supervised segmentation models have also been employed for
detecting defects on surfaces. Tabernik et al. [11] presented a deep
learning approach with two sets of CNN networks for detecting and
segmenting surface cracks with a small number of training samples.
Their proposed method outperformed other state-of-the-art
segmentation networks, such as U-net and DeepLab v3, and required
only around 25-30 defective samples for training. Additionally, they
created a new dataset based on a real-world quality control case,
making it publicly available for further research and evaluation.

Unsupervised learning frameworks have been used to detect cracks
in 3D laser-scanned point clouds of building components in
post-disaster scenarios. The CrackEmbed method [12], a point-based

deep neural network, extracted discriminative point features using a
feature embedding network trained with the triplet loss function. An
unsupervised anomaly detection algorithm was then applied to
separate damaged points from non-damaged points based on their
distribution in feature space, allowing for the identification of cracked
regions. The proposed method achieved high accuracy and was
evaluated in real-world disaster scenarios.

In addition, some models adopt a memory bank of nominal features
obtained from a pre-trained backbone network to detect anomalies at
both the image and pixel levels. These models, such as PatchCore,
Padim, and SPADE [13], offer competitive inference times and achieve
state-of-the-art performance for both detection and localization.

In the realm of deep learning and computer vision, various
approaches have been developed for the detection and localization of
surface defects in building components and industrial products. These
include techniques based on CNNs, GANs, Transformers, Siamese
networks, supervised segmentation networks, and more. Among
these methods, the PatchCore anomaly detection model has garnered
attention due to its unique features and advantages. One of its main
advantages is that it only requires normal images for training, making
it attractive for many use cases. By leveraging a memory bank of
nominal features derived from a pre-trained backbone network, the
model effectively detects anomalies at both the image and pixel
levels. The model offers competitive inference times while achieving
state-of-the-art performance for both detection and localization [13].
Unlike supervised models, anomaly detection models like PatchCore
can detect previously unseen anomalies, as they are trained solely on
nominal data without relying on known defects encountered during
the training process. This advantage makes them suitable for
scenarios with limited or unavailable training data for specific
defects. Additionally, the structure of the model provides the
flexibility to explore different configurations beyond the original
paper, such as leveraging various backbones and different output
layers tailored to specific requirements. Through rigorous
experimentation and evaluation, the effectiveness of the PatchCore
model can be assessed in specific domains, contributing to
advancements in anomaly detection for real-world datasets with
diverse characteristics.

3 MATERIALS AND METHODS

This section explains important details about networks, datasets,
annotations of data, and basic calculations that have been used in this
research. The main flow of this research starts with the anomaly
detection model and related dataset and annotation.

3.1 PatchCore Anomaly Detection
In this paper, we use a state-of-the-art method for anomaly detection
in images called PatchCore. PatchCore is an anomaly detection
model that uses a patch-based approach to detect anomalies in
images. It works by dividing an image into patches and extracting
features from each patch. PatchCore has been shown to achieve
state-of-the-art performance on several benchmark datasets, including
the MVTec AD and STC datasets [13].

Figure 1 provides a visual representation of the PatchCore model
and its functioning. The model follows a two-step process for training
and testing. During the training phase, the PatchCore model takes
normal images as input and processes them using a backbone
network. The backbone network extracts patch-level features from
the input images. The backbone network used in the PatchCore
model was pre-trained on the ImageNet dataset. However, it is
important to note that the original research primarily focused on
leveraging medium-level layers to mitigate potential biases
introduced by the pre-trained network towards the features present in
ImageNet classes. In deeper layers, there is a possibility of increased
bias towards ImageNet features, which we aim to address and
investigate in this study. To reduce storage requirements and
inference time, a coreset subsampling technique is applied to select
representative patches. The features of these patches are then stored
in a memory bank. The memory bank serves as a repository of



Fig. 1: An Overview of the PatchCore Model [13]. The PatchCore model is trained by passing normal images through a backbone network to
extract patch-level features. These features are then stored in a memory bank, representing the pattern of normal images. During testing, the
patch-level features of test set images are compared to the normal patches stored in the memory bank using a nearest neighbor search. Based on
the differences or similarities of the patch-level features, an anomaly score is calculated for each patch in the image.

normal patch-level features, capturing the patterns and characteristics
of the normal images used for training. These features act as a
reference for comparison during the testing phase.

In the testing phase, the PatchCore model takes test images as
input. Similar to the training phase, the backbone network extracts
patch-level features from these test images. These features are
compared to the stored normal patch-level features in the memory
bank using a nearest neighbor search. By measuring the difference or
similarity between the patch-level features of the test images and the
stored normal patches, an anomaly score is calculated for each patch
in the test images. This anomaly score indicates the likelihood of a
patch being an anomaly or deviating from the normal patterns learned
during training. The PatchCore model leverages the collective
anomaly scores of the patches to identify and localize anomalies
within an image. A higher anomaly score suggests a higher likelihood
of an anomaly being present in the corresponding patch.

It is important to note that the visual representation provided in
Figure 1 offers a clearer understanding of the model’s architecture
and the flow of data during training and testing. By referring to the
figure, one can easily grasp the key steps involved in the PatchCore
model and how it operates to detect anomalies in images.

3.2 Backbone Networks

3.2.1 WideResNet50

The original PatchCore model utilizes a pre-trained ResNet network
based on the ImageNet dataset, specifically the WideResNet50 or
WideResNet101 architectures. However, due to potential bias in
feature extraction caused by the ImageNet classes, the model only
uses medium-level layers. We hypothesized that utilizing high-level
feature layers could improve feature accuracy. To test this hypothesis,
we conducted experiments with other networks trained on the data of
the building component images.

3.2.2 Deeplabv3+

Deeplabv3 is a model that is originally built upon the ResNet-101
network and adapted to other models later on. Deeplab makes use of
the ResNet blocks and applies atrous convolutions to compute feature
responses in fully connected networks [14]. In PyTorch, the model
was trained on the ImageNet dataset and additionally, we retrained
the DeepLabv3+ network on similar images from our dataset to
perform roof and casing segmentations. The objective of retraining
these networks was to examine whether training backbones with a
similar dataset, but for a different task, improves the performance of
the model and enables the utilization of deeper layers for more
detailed features and/or faster computations.

3.2.3 ResNet50

ResNet50 is a deep neural network architecture commonly used for
image classification tasks. It utilizes the concept of residual learning,
enabling the network to learn residual mappings instead of direct
mappings. This characteristic allows for training deeper networks
without encountering vanishing gradient issues [15]. In our research,
we employed the pre-trained ResNet50 model in PyTorch, which was
originally trained on the ImageNet dataset. Additionally, we retrained
this model specifically for the classification task of distinguishing
between nominal and defective images using the same dataset and
train-validation split. This ensures that the images used for testing
and validation in the anomaly detection model have not been
previously seen by the ResNet50 model.

3.3 Layer Selection for Feature Extraction

In the PatchCore anomaly detection model, we explored the use of
different layers of backbone networks to extract features in various
scenarios. The choice of feature layers plays a crucial role in
balancing detail and generalization. When extracting features from
deeper layers, we obtain more detailed and specific information about
the input data. However, it is important to consider the potential bias
towards the dataset on which the backbone networks were originally
trained.

Alternatively, utilizing shallower layers of the backbone networks
provides more general features that capture lower-level patterns and
concepts. However, the computation time and usage of the memory
increase due to the larger data size involved.

To address these considerations, the original paper proposed
leveraging the medium-level layers (2 and 3) of the WideResnet50
architecture as the baseline approach. This choice was made to strike
a balance between capturing sufficient detail in the features extracted
by the model and avoiding excessive bias towards the pretrained
dataset.

Furthermore, we investigated the impact of retraining the backbone
networks, which were already trained on ImageNet class, based on
the specific dataset in our research. In our research, we performed
retraining on the ResNet50 network for classification purposes, using
the same dataset and split to classify nominal and defective building
components. Additionally, we retrained a ResNet101 backbone using
Deeplabv3 for roof and windows segmentation on similar images
from our dataset to perform roof and casing segmentation. By
exploring different feature layers and considering the implications of
retraining backbone networks, we aimed to optimize the balance
between detail and generalization, and ultimately improve the
effectiveness of the anomaly detection model in our specific context.



3.4 Dataset
The data used in this study consisted of images captured by a drone
from various buildings and locations in the Netherlands, obtained
from an aerial scan company. The images were taken from different
angles and categorized into different units or buildings. with each
unit representing one or a set of buildings imaged in a single session.
The aerial images obtained from the aerial scan company were used
to generate a 3D model of the buildings. The company then employed
this 3D model to annotate each unit separately, with the annotations
projected onto the corresponding 2D images.

For anomaly detection, it is crucial to have a large number of good
or nominal images that have regular patterns. In our dataset, the
Casing and Roof components had the highest number of images, and
the images of these components showed a higher degree of similarity.
Additionally, the quality of annotation needs to be considered.
Therefore, these components were chosen as the focus of our
research, as they provided the best opportunity to work on a
well-defined and uniform set of images for anomaly detection. As the
first step of our investigation, we initially focused on obtaining masks
for these components and their corresponding defects. An example of
an original image and its corresponding annotated image with
building components and defects is shown in Figure 2 and 3. For
example in Figure 2, we specifically focused on casings and their
associated defects. These defects encompassed various issues such as
dirtiness, rot, damage, moss, and more. However, during the
preparation process, we encountered challenges with the projection of
annotations from the 3D model to the 2D images. As a result, there
were instances where the highlighted yellowish mask in the middle of
the image appeared unrelated to the casings. This occurred when the
annotation represented components or defects that were not visible in
the 2D image, as they were located behind or on the other side of the
building.

3.4.1 Data Preparation
To prepare the data, it was necessary to create a curated list of the
most useful images from a pool of approximately 8000 images, as
described later. This approach aimed to minimize the extensive
manual cleaning effort during the final data processing stage. The
objective was to extract and crop the target components from the
images, resulting in a larger number of components compared to the
initial number of images, as each image may contain multiple
components. We chose images that had well-annotated roofs, casings,
or glass, along with all components and defects, captured from an
angle as close to perpendicular as possible. This was done to ensure
that the images were taken with consistent and straight angles, which
facilitates training the model on a uniform dataset.

3.4.2 Casing Dataset
To generate cropped images of the casings, we first used the casing
masks to crop the images. Next, based on the overlap of the casing
annotation and defect annotation in the region of the cropped image,
we recognized whether the cropped images contained defects or not.
To ensure that the cropped images contained only the casing, we set
the pixel values outside of the casing mask to zero. Similarly, to
isolate the glass region of the casing, we set the pixel values inside
the glass mask and outside the casing mask to zero. We hypothesize
that this can help the model only focus on the relevant features of the
casing. The resulting cropped images were saved in their respective
categories, with defective cropped images having a new mask
generated as ground-truth and all defects categorized as one class.
Figure 4 shows an example of a cropped defective image with its
overlayed defect and mask file. After the generation of cropped
images, we conducted another manual inspection to remove images
that did not include the whole casing component with an almost
90-degree angle and with no obstacle present in front of it in the
cropped image. For non-defective cropped images, it was crucial that
the entire casing component was fully intact with no defects or
obstructions present. This process ensured the selection of the most
appropriate images for further analysis, resulting in a high-quality

Fig. 2: An image and masks of the casing components and defects on
it. Masks for casings, glasses and different defects overlaid onto the
original images

Color Description
Casing
Glass
Growth: moss, algae
Damage: end-stage intensity
Dirt, deposits, discoloration
Peeling: end-stage intensity

Fig. 3: An image and masks of the roof components.

Color Description
Roof

dataset for the subsequent training of the anomaly detection models.
After performing manual cleaning, the initial set of 1100 cropped
images was reduced to 455 final images with 102 cleaned nominal



images. However, we encountered a challenge with the dataset that
during testing, we observed a significant class imbalance between the
defective and nominal images. To address these issues, we applied
data augmentation techniques exclusively to the nominal images,
including vertical flipping and 180-degree rotation, effectively
tripling their quantity in the dataset. Moreover, augmenting the
quantity of nominal images could help the training process of the
model.

(a) Overlayed casing and
defect mask on a sample

(b) A final sample as
defective

(c) The mask of the
defect(s)

Fig. 4: Final processed images for casings.

3.4.3 Roof Dataset
To prepare the roof dataset, we first removed other components from
the images, leaving only the roof area. We then automatically divided
the images into two groups, Nominal and Defective, based on their
defect mask. We manually checked and cleaned the data to ensure the
accuracy of the classification between nominal and defective data.
Additionally, we checked the angle of the images and inspected for
any annotation issues such as the presence of other components in the
images. After undergoing manual cleaning, the original collection of
955 cropped images was refined to a final set of 440 images for the
roof dataset. Figure 5 illustrates an example of the data cleaning
process for the roof dataset. Similar to the casing dataset, we
encountered a challenge with the limited number of images, having
only 71 nominal images available. To address this issue and improve
the balance between the nominal and defective classes during testing,
we applied vertical flipping and 90-degree rotation to augment the
existing nominal images. This augmentation technique increased the
number of nominal images and helped create a more balanced
dataset.

Fig. 5: Examples of data preparations for roofs

3.4.4 Tiled Roof Dataset
The roof dataset comprises a relatively small number of images, and
these images exhibit significant variations, particularly in terms of
roof shapes and the presence of black parts resulting from removed
components. This diversity poses challenges for an anomaly
detection model, as it is desirable for the training data to exhibit
similarity to effectively represent features of a nominal image. To

increase the number of normal or nominal images and to reduce the
noise of the roof dataset, we generated a new dataset by dividing each
roof image into 512 × 512 pixel tiles. As roofs typically have a
repetitive pattern, we were able to identify and keep only the tiles that
contained complete roof images. We then manually inspected 3003
tiles to classify them as either nominal or defective, resulting in a
total of 795 nominal and 890 defective tile images. As only some
parts of a roof were usually defective, many tiles generated from
defective images were classified as nominal or normal images after
tiling. However, it is important to acknowledge that during the tiling
process, tiles from the same original image could appear in both the
training and test sets. This can potentially introduce a bias in the
evaluation process. Figure 6 provides examples of both nominal and
defective tiles.

(a) Nominal Tiles

(b) Defective Tiles

Fig. 6: Examples of nominal and defective samples of tiled dataset

Table 1 provides an overview of the dataset information for the three
datasets.

3.5 Metrics
When the model makes a prediction based on the calculated threshold
value, there are four possible outcomes:

• True Positive (TP): The model correctly detects a defective
image as defective.

• False Positive (FP): The model incorrectly detects a nominal
image as defective.

• True Negative (TN): The model correctly detects a nominal
image as nominal.

• False Negative (FN): The model incorrectly detects a defective
image as nominal.

Ideally, the model should predict as many true positives and true
negatives as possible and as few false positives and false negatives as
possible. The confusion matrix representing these outcomes is shown
in Table 2. Precision is the ratio of correct true positive predictions
(ground truth) to the positive predictions made by the model (true
positives and false positives). The precision formula is shown in
Equation 1.

Precision =
T P

T P+FP
(1)

Recall is the ratio of correct true positive predictions (ground truth) to
all Defective samples (true positives and false negatives). The recall



Dataset Initial Images Cleaned Images Train/Val/Test Sets for Nominal class Val/Test Sets for Defective class

Casing 1100 455 182 / 60 / 62 70 / 71

Roof 905 440 127 / 43 / 42 74 / 75

Tiled Roof 3003 1685 477 / 158 / 160 163 / 165

Table 1: Dataset Information

Predicted Defective Predicted Nominal

Actual Defective True Positive (TP) False Negative (FN)

Actual Nominal False Positive (FP) True Negative (TN)

Table 2: Confusion matrix for model predictions.

formula is shown in Equation 2.

Recall =
T P

T P+FN
(2)

F1-score is the harmonic mean of precision and recall metrics. The
F1-score formula is shown in Equation 3, which links the previously
defined metrics.

F1-score =
2×Precision×Recall

Precision+Recall
(3)

The Area Under the Curve (AUC) is a common metric used in
evaluating the performance of anomaly detection models. It measures
the model’s ability to rank anomalies higher than normal samples. A
higher AUC value indicates better discrimination between anomalies
and normal samples.

The AUC is calculated by integrating the Receiver Operating
Characteristic (ROC) curve. The ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR) at various threshold
values. The formula for AUC is shown in Equation 4.

AUC =
∫ 1

0
TPR(FPR−1(t))dt [16] (4)

In addition to these main metrics, it can be useful to calculate the
accuracy of each class, which provides insights into the model’s
performance for individual classes. The accuracy of the ”Nominal”
class is given by the ratio of true negatives to the sum of true
negatives and false positives. Similarly, the accuracy of the
”Defective” class is given by the ratio of true positives to the sum of
true positives and false negatives.

3.6 Thresholds and Inference
In this research, we used thresholds to determine whether patches and
entire images were normal or anomalous. These thresholds were
crucial for distinguishing between normal and abnormal patches
within an image.

To establish the threshold values, we formulated an optimization
problem with the objective of maximizing the F1-Score. This
optimization was performed during the validation phase using a
dedicated dataset. The range of each patch’s anomaly score was
defined, with the lower level representing the minimum intensity level
and the upper level set to prevent high-intensity noise from being
classified as anomalous. By considering these threshold ranges, we
could identify and classify normal and abnormal patches in an image.

The optimization problem involved some key constraints. First, the
lower and upper threshold values were bounded by the minimum and
maximum anomaly scores across all patches of all images in the
validation set. This ensured that the threshold values remained within

a reasonable range. Then, the threshold value for flagging the whole
image was constrained to be between 0.5% and 3%.

The optimization problem can be expressed as follows:

Maximize: F1-Score
Constraints: min(scores) ≤ Lower threshold ≤ max(scores)

min(scores) ≤ Upper threshold ≤ max(scores)
Lower threshold < Upper threshold
0.05% ≤ Threshold for flagging the whole image ≤ 0.3%
Accuracy of ”Nominal” class ≥ 0.5
Accuracy of ”Defective” class ≥ 0.5

The last constraints ensure that the threshold values are within a
reasonable range and that the accuracy of both the ”Nominal” and
”Defective” classes is above 0.5, which helps prevent bias in cases
where the number of images in the two classes is highly unbalanced.

To solve the optimization problem, we aimed to find the optimal
threshold values that would maximize the F1-Score. This allowed us
to effectively flag an entire image as either normal or anomalous based
on a specific threshold percentage.

Once the thresholds were calculated in the validation phase, they
were applied in the test loop to label the images. To generate
informative output images, we utilized the anomaly scores of patches
as an anomaly map. This map provided a visual representation of the
areas within an image that exhibited anomalies. By overlaying the
anomaly map as a heatmap on the original image, we created a
comprehensive visualization that highlighted the anomalous regions.

To ensure the clarity and focus of the inference, we further refined
the heatmap by setting the values of normal patches to zero. This
adjustment eliminated the contribution of normal patches from the
heatmap, allowing anomalies to be more easily identified and
distinguished.

By following this process of threshold determination and utilizing
anomaly maps and heatmaps, we could accurately classify and
visualize the anomalous parts of the images.

4 EXPERIMENTS AND RESULTS

4.1 Experiments
In this section, we present a series of experiments aimed at training
an anomaly detection model using different backbone networks,
generated datasets, and layers of feature extraction. Throughout the
training process, the upsampling of extracted features for storage in
the memory bank exhibits potential variations. This arises from the
utilization of a greedy search algorithm and the introduction of
variety through shuffling the input data. Consequently, these factors
introduce variability in the results obtained from multiple runs. To
address this inherent randomness, each experiment was conducted 10
times, and the average and standard deviation of the outcomes were
calculated to provide a robust representation of the experimental
results. We evaluated the performance of the PatchCore anomaly
detection model on different datasets, which are outlined as follows:

4.1.1 Experiment 1:Casing Dataset (focused on identifying
defects on windows)

In this experiment, we aimed to evaluate the performance of the
PatchCore anomaly detection model on the Casing dataset.



4.1.2 Experiment 2: Roof Dataset (focused on identifying
defects on roofs using the whole image)

To assess the effectiveness of the PatchCore anomaly detection model
on the Roof dataset, we trained the model with the same three
backbone networks.

4.1.3 Experiment 3: Tiled Roof (focused on identifying defects
on roofs using images tiles)

In these experiments, we employed three different backbone networks
and varied the layers used for feature extraction. Additionally, we
explored two approaches: using the default pre-trained weights and
re-training the networks on our data, either for different tasks or similar
tasks. Due to the availability of a more extensive and curated dataset
for the Tiled Roof dataset, we conducted additional experiments to
further investigate the performance of different layers in pre-trained
backbones. Additionally, we introduced the ResNet18 network into
our experiments in this specific dataset.

4.2 Results
In this section of our paper, we present both quantitative and
qualitative assessments of our model’s performance. The quantitative
results are summarized in Tables 3, 4, and 5 for experiments 1, 2, and
3 respectively, providing numerical evaluations of the defined metrics
for different experiments.

4.2.1 Quantitative Results
Casing Dataset: Table 3 presents the anomaly detection results for
the Casing Dataset. We evaluated the performance of different
backbone networks and layers of feature extraction. The
WideResNet50 Pretrained network achieved the best F1-score of
60.4% with layers 2 and 3, and the highest AUC of 61.0%. It also had
the highest Nominal Class Accuracy of 65.6% and the highest
Defective Class Accuracy of 56.3%. networks, with various
combinations of layers, achieved F1-scores ranging from 44.5% to
57.7% and AUC scores ranging from 45.4% to 58.0%. The accuracy
in the Nominal class and Defective class varied between 31.6% and
55.9% and between 42.6% and 67.3%, respectively. The DeepLab
Pretrained network and the DeepLab Retrained network showed
lower performance compared to WideResNet50, while the ResNet50
Retrained networks performed slightly better. It indicates that
retraining the ResNet50 classification network yielded superior
results compared to retraining the DeepLab segmentation network.

Roof Dataset: Table 4 presents the anomaly detection results for
the Roof Dataset. In the best scenario, the ResNet50 Retrained
network with layers 3 and 4 achieved the highest F1-Score of 55.4%
and also obtained the highest AUC of 56.3% and showed promising
performance in both the Nominal Class Accuracy (50.8%) and
Defective Class Accuracy (61.8%), which mean re-training the
backbones for the classification task and utilizing higher-level feature
layers, improved the performance. In the second best scenario, the
ResNet50 Retrained network with layers 2, 3, and 4 achieved an
F1-Score of 55.0% and an AUC of 57.6%. The other configurations
showed varying levels of performance.

Tiled Roof Dataset: The ResNet50 Retrained network with layers
2, 3, and 4 achieved the highest F1-Score of 82.2%and also yielded
the highest AUC of 82.2% and demonstrated Nominal Class
Accuracy (80.9%) and Defective Class Accuracy (83.6%). Once
again, the re-training of backbones for the classification task and the
utilization of higher-level feature layers proved to enhance the
performance. In terms of the next best scenarios, the DeepLab
Pretrained network with layers 2 and 3, as well as the ResNet50
Pretrained network with layers 2 and 3, both achieved an F1-Score of
81.4%(0.03) and 81.1%(0.01), respectively. These scenarios also
showcased high AUC values of 81.4% and 82.2%, along with
competitive Nominal Class Accuracy and Defective Class Accuracy
metrics. The ResNet18 network with layers 2 and 3 achieved an
F1-Score of 75.9%, with a corresponding AUC of 76.0%. These
results suggest that the Retrained ResNet50 network with layers 2, 3,
and 4 performs the best on the Tiled Roof dataset. However, the next

best scenarios, which include the DeepLab Pretrained network with
layers 2 and 3 and the ResNet50 Pretrained network with layers 2 and
3, exhibit comparable performance.

4.2.2 Qualitative Results

In addition to these quantitative measures, we also analyze the
qualitative results, which are illustrated through the output images
generated by our model. These images showcase different scenarios
and offer visual insights into the detection and localization of
anomalies in the examined data. Each qualitative result image
consists of two parts: the right-side image displays the original image
with the heatmap overlay, highlighting regions of potential anomalies,
while the left-side image presents the original image with segmented
contours of the heatmap drawn to provide a clearer understanding of
the detected anomalies. These images presented in Figures 7 to 17 in
Appendix A. For certain images, additional necessary explanations
are provided in the sub-captions, offering concise descriptions of the
observed heatmaps.

Casing Dataset: Although the number of results for the casing
dataset was relatively low, the output images still provide valuable
information. Figures 7 showcase examples of correct predictions for
the defective dataset, where the heatmaps accurately outline the
location of defects. However, there are cases like Figures 8 where the
predictions are correct, but the heatmaps and segmentation do not
provide useful information about the location of the defects. For
instance, in Figures 8a and 8c, the defective annotations include
irrelevant objects such as glasses and parts of bricks, resulting in
incorrect heatmaps and segmentation. Additionally, in Figure 8b, the
type of casing is significantly different from the other types in our
dataset, making it challenging for the heatmap to indicate relevant
areas. Moreover, the heatmap of Figure 8d does not reveal any
specific region due to the nature of the casing. Figure 9 shows
examples of incorrect prediction of the Defective class. In Figure 9b,
the defect appears small, and as a result, the entire image was not
detected as defective. Similarly, in Figure 9a and Figure 9c, there
seem to be no issues with the casing, which could be due to small
defects or errors in the annotation process. Figures 10 and 11 show
examples of Correct and Incorrect predictions for the Nominal class
of the Casing dataset. These qualitative results provide valuable
insights into the performance of the model and highlight the
challenges faced in accurately detecting and localizing anomalies in
the casing dataset.

Roof Dataset: Despite having similar range values for the metrics,
the output images for the roof dataset, as shown in Figure 12, do not
provide significant assistance in determining the location of defects
and lack specific meaning, unlike the casing dataset. This can be
attributed to the extensive diversity present in the roof images within
the dataset. As a result, the model’s performance for the roof dataset
is not satisfactory both quantitatively and qualitatively. The
variability in roof types, textures, images and conditions adds
complexity to the task, making it difficult for the model to provide
informative heatmaps and segmented contours.

Tiled Roof Dataset: We obtained better quantitative results for the
tiled roof dataset, and the corresponding output images support this.
Figure 13 showcases examples of correct predictions for defective
tiled roofs. The model performs well in detecting some sort of
dirtiness, as shown in Figure 13a, and it is also effective in identifying
fractures and changes in pattern, as demonstrated in Figure 13d.
Additionally, Figure 13b illustrates the detection of moss on the roof,
while Figure 13c presents an interesting case where a piece of rope on
the roof is detected, although it is not considered a defect. Similar to
the casing dataset, the heatmaps generated for the defects in tiled
roofs do not necessarily correspond closely to the actual location of
the defect, as depicted in Figure 14. In some instances, the model
mistakenly identifies shadows as anomalies or defects, as shown in
Figure 14c.

Figure 15 demonstrates incorrect predictions for defective tiled
roofs. In Figure 15b, although a defect exists, it is relatively small,
and based on the calculated threshold, the tile is labeled as normal.



Casing Dataset

Backbone Network Layer F1-Score AUC Nominal Class Accuracy Defective Class Accuracy
WideResNet50 Pretrained 2,3 60.4% (±5.9%) 61.0% (±6.1%) 65.6% (±12.4%) 56.3% (±7.3%)

DeepLab Pretrained 2,3 44.5% (±2.5%) 45.4% (±2.3%) 31.6% (±6.6%) 59.2% (±6.6%)

DeepLab Retrained
(Segmentation)

2,3 47.6% (±5.5%) 48.3% (±5.7%) 54.0% (±12.4%) 42.6% (±6.3%)

3,4 51.3% (±4.2%) 51.5% (±4.2%) 46.6% (±7.4%) 56.5% (±9.6%)

2,3,4 53.3% (±3.3%) 54.1% (±3.3%) 46.1% (±14.3%) 62.0% (±10.2%)

ResNet50 Pretrained 2,3 50.1% (±3.6%) 50.4% (±3.4%) 45.6% (±10.7%) 55.3% (±5.9%)

ResNet50 Retrained
(Classification)

2,3 52.7% (±5%) 53.0% (±5.2%) 51.6% (±8.5%) 54.5% (±10.3%)

3,4 56.3% (±2.9%) 56.6% (±2.8%) 46.0% (±6.3%) 67.3% (±3.9%)

2,3,4 57.7% (±1.4%) 58.0% (±1.4%) 55.9% (±8.8%) 60.1% (±6.3%)

Table 3: Anomaly Detection Results – Casing (Average of 10 times running and STD)

Roof Dataset

Backbone Network Layer F1-Score AUC Nominal Class Accuracy Defective Class Accuracy
WideResNet50 Pretrained 2,3 42.3% (±1.7%) 42.3% (±1.7%) 32.5% (±4.5%) 52.1% (±5.8%)

DeepLab Pretrained 2,3 42.4% (±2.8%) 42.6% (±2.6%) 27.1% (±7.2%) 58.0% (±4.2%)

DeepLab Retrained
(Segmentation)

2,3 50.2% (±7.7%) 50.8% (±8.3%) 39.3% (±16.6%) 62.3% (±7.1%)

3,4 50.3% (±4.5%) 50.7% (±4.1%) 32.0% (±9.3%) 69.5% (±7.2%)

2,3,4 45.2% (±2.7%) 47.2% (±1.5%) 22.9% (±11.7%) 71.5% (±12.8%)

ResNet50 Pretrained 2,3 43.5% (±2.1%) 43.8% (±1.9%) 37.6% (±4.9%) 50.0% (±5.6%)

ResNet50 Retrained
(Classification)

2,3 42.4% (±1.7%) 42.8% (±1.7%) 38.9% (±3%) 46.7% (±3.9%)

3,4 55.4% (±1%) 56.3% (±1.8%) 50.8% (±11.7%) 61.8% (±8.5%)

2,3,4 55.0% (±2.2%) 57.6% (±2.4%) 64.3% (±9.5%) 50.9% (±7.3%)

Table 4: Anomaly Detection Results – Roof (Average of 10 times running and STD)

Tiled Roof Dataset

Backbone Network Layer F1-Score AUC Nominal Class Accuracy Defective Class Accuracy

WideResNet50

2,3 77.4% (±14.8%) 79.1% (±9.9%) 71.9% (±24.4%) 86.2% (±6.5%)

3,4 65.5% (±1.5%) 65.7% (±1.3%) 65.3% (±8.5%) 66.2% (±7.5%)

2,3,4 69.2% (±1.4%) 69.4% (±1.4%) 64.1% (±6.6%) 74.7% (±7%)

ResNet50 Pretrained

2,3 81.1% (±2.8%) 81.2% (±2.7%) 82.5% (±2.1%) 79.9% (±5.7%)

3,4 61.5% (±1.7%) 61.9% (±1.7%) 70.3% (±3%) 53.5% (±2.6%)

2,3,4 69.6% (±1%) 69.7% (±1.1%) 68.3% (±4.5%) 71.1% (±6%)

ResNet50 Retrained
(Classification)

2,3 70.0% (±4.1%) 70.4% (±3.8%) 76.3% (±6.3%) 64.5% (±11.7%)

3,4 74.3% (±0.8%) 74.4% (±0.8%) 77.5% (±3.8%) 71.3% (±3%)

2,3,4 82.2% (±1.1%) 82.2% (±1.1%) 80.9% (±2.8%) 83.6% (±3.6%)
ResNet18 Pretrained 2,3 75.9% (±1.8%) 76.0% (±1.8%) 79.1% (±4%) 73.0% (±4.9%)

DeepLab Pretrained

2,3 81.4% (±1.2%) 81.4% (±1.2%) 75.8% (±4.6%) 87.0% (±4.3%)

3,4 73.0% (±2.2%) 73.1% (±2.2%) 73.6% (±4.2%) 72.5% (±6%)

2,3,4 81.1% (±0.8%) 81.1% (±0.8%) 75.3% (±3.1%) 86.9% (±3.4%)

DeepLab Retrained
(Segmentation)

2,3 52.0% (±8%) 54.2% (±4.9%) 54.5% (±20.6%) 53.8% (±17.2%)

3,4 57.1% (±2.7%) 57.3% (±2.7%) 54.7% (±7%) 59.9% (±7.5%)

2,3,4 56.0% (±2.5%) 56.2% (±2.5%) 51.0% (±5.2%) 61.4% (±7.2%)

Table 5: Anomaly Detection Results – Tiled Roof (Average of 10 times running and STD)



The model encounters difficulties in detecting certain types of
dirtiness, as seen in Figure 15d. When it comes to detecting Nominal
tiles, the model performs well, as illustrated in Figure 16. However,
there are still some challenges, such as misclassifying tiles with
shadows (Figure 17a) or non-common types of roofs in our dataset
(Figures 17b and 17c), as well as instances of incorrect annotation
(Figure 17d).

5 CONCLUSION AND DISCUSSION

Our study focused on the performance evaluation of the PatchCore
anomaly detection technique in identifying defects in roofs and
window casings. For the Casing Dataset, the WideResNet50
backbone with layers 2 and 3 demonstrated superior performance in
terms of F1-score, AUC, and class accuracy metrics. This
configuration proved to be the most effective in detecting anomalies
in the casing images.

In the Roof Dataset, our model’s performance was unsatisfactory
both quantitatively and qualitatively. The extensive diversity in roof
types, textures, images, and conditions posed challenges for accurate
anomaly detection.

The Tiled Roof Dataset significantly improved the model’s
performance compared to the Roof Dataset. The ResNet50 Retrained
network with layers 2, 3 and 4 achieved the highest F1-Score and
AUC.

In general, our results show that using the ResNet50 backbone,
which was retrained based on the classification task using the same
dataset, and utilizing a higher-level feature layer of this backbone
yielded the best configuration in our experiments. This configuration
demonstrated superior performance in detecting anomalies in our
specific domain. These findings highlight the importance of
leveraging alternative backbone networks and retraining them
specifically for the classification task, as well as utilizing deeper
layers of extracted features. Such approaches can significantly
enhance the performance of the model and contribute to the
advancement of anomaly detection in real-world datasets with diverse
characteristics.

For the Casing Dataset, the WideResNet50 backbone with layers 2
and 3 demonstrated superior performance in terms of F1-score, AUC,
and class accuracy metrics. This configuration proved to be the most
effective in detecting anomalies in the casing images. In the Roof
Dataset, our model’s performance was unsatisfactory both
quantitatively and qualitatively. The extensive diversity in roof types,
textures, images, and conditions posed challenges for accurate
anomaly detection. The Tiled Roof Dataset significantly improved
the model’s performance compared to the Roof Dataset and the
ResNet50 Retrained network with layers 2 and 3, and 4, and the
DeepLab Pretrained network with layers 2 and 3 achieved the highest
F1-Score and AUC. The model exhibited good capabilities in
detecting dirtiness, damage, and changes in the pattern on tiled roofs.
However, it faced challenges in accurately predicting images with
shadows and certain types of dirtiness.

This study utilizes the PatchCore anomaly detection model as a
state-of-the-art approach. While the original purpose of this model
was to detect defects in industrial products with similar design, shape,
size, and color, we have adapted it for the detection of building
components and a dataset that is derived from a building inspection
company, which is a novel application of this model. Additionally,
the baseline research exclusively utilized WideResNet50 networks as
the backbone, with a specific emphasis on medium-level layers. This
choice was made to mitigate any potential bias towards objects
present in the ImageNet dataset, on which the model is pre-trained
[13]. In contrast, we have expanded our approach by incorporating
various networks and retraining them using our dataset. Furthermore,
we have leveraged the extracted features from deeper layers.
Employing various backbone architectures and layer configurations,
allowing us to assess their impact on the model’s performance. This
methodology strengthens our findings by demonstrating the
importance of selecting appropriate backbone architectures and
leveraging specific layers for optimal anomaly detection results.

The diversity within the Roof Dataset posed challenges for
accurate anomaly detection, affecting both quantitative and
qualitative evaluations. Unlike standard datasets of industrial
products, in this study, we had to extract and label building
components from images based on their defects. The accuracy of
these annotations was crucial, and we aimed to automate and expedite
this process. However, due to the lack of segmentation annotations,
we had to perform extensive manual cleaning, which was
time-consuming and had implications for the overall dataset quality.
This limitation could have an impact on our ability to effectively
differentiate between good and bad results, further complicating the
anomaly detection task.

In addition to the challenges related to accurate annotations,
another significant hurdle in this study was the variation in the angle
and distance at which the images of building components were
captured by drones. Furthermore, there were instances where objects
obstructed the view of the components, making it even more difficult
to obtain clean and labeled component images for experimentation.
These factors introduced additional complexities and further
compounded the difficulties in conducting accurate anomaly
detection on the Roof Dataset.

Taking into account all the aforementioned challenges that had an
impact on the model’s performance, significant efforts were made to
address them and prepare the dataset using the mentioned ideas and
techniques, particularly for the tiled roof dataset. Despite the
difficulties, the results obtained from the casing and tiled roof dataset,
along with the information provided by the heatmap outputs
regarding the location of anomalies, were quite promising. The
quantitative and qualitative results for the Tiled Roof dataset
exhibited significant improvement compared to the Roof dataset. This
indicates the effectiveness of the solutions we implemented on a
real-world dataset, including data cleaning and curation, as well as
increasing the quantity of nominal images. These measures played a
crucial role in surpassing the performance of the main model.

The PatchCore anomaly detection model imposes significant
hardware memory requirements due to the process of generating the
memory bank. In order to construct the memory bank, all the
embedding features from different layers need to be obtained and
concatenated. This operation not only incurs high computational
costs but may also become infeasible, particularly when using
multiple layers of features or features from initial network layers. To
address this challenge, we explored an alternative solution by
employing a simpler network architecture, such as ResNet18. This
choice resulted in significantly reduced feature sizes and
computational costs compared to the baseline model. Despite this
limitation, ResNet18 still achieved commendable results, comparable
to the best-performing configurations. This adaptation enhances the
model’s practical applicability, as it strikes a balance between
computational efficiency and effective anomaly detection.

5.1 Future Works
Considering the challenges associated with creating a more uniform
dataset or making it similar to industrial product datasets, a potential
avenue for future work involves implementing a model that can detect
and analyze each ceramic tile of the roof individually. By examining
the tiles separately, it may be possible to achieve more precise defect
detection, potentially leading to improved results.

To reduce the computational cost and memory requirements during
feature extraction from images, an alternative solution is to
incorporate Squeeze-and-Excitation Networks (SENet). By
integrating SENet into the model architecture, it is possible to
improve the model’s performance while also reducing memory usage
during training.

Our model, as demonstrated in the results, has the capability to
segment the locations of defects within the components. With
well-annotated defect locations, we can further enhance the analysis
and accuracy of our model. Instead of solely classifying images as
nominal or defective, we can delve deeper into understanding the
specific nature and extent of defects present. By leveraging the



segmentation information, we can gather more detailed insights about
the size, shape, and characteristics of the defects. This additional
level of analysis could enable a more precise and comprehensive
understanding of the anomalies present within the components.
Therefore, future work could focus on leveraging the segmentation
output to perform detailed defect analysis and provide more nuanced
information about the nature of the defects detected.
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A APPENDIX A - EXAMPLES OF OUTPUT IMAGES FOR DIFFERENT DATASETS

(a) (b) (c) (d)

Fig. 7: Correct Prediction for Defective Casing - Right image depicts heatmap of potential defects on the resized original image, while the left
image shows the contour overlay of the heatmap for precise localization of potential defects.

(a) (b) (c) (d)

Fig. 8: Correct Prediction for Defective Casing with Irrelevant Heatmap - Right image depicts heatmap of potential defects on the resized
original image, while the left image shows the contour overlay of the heatmap for precise localization of potential defects.

(a) (b) Small defect (c) (d)

Fig. 9: Incorrect Prediction for Defective Casing - Right image depicts heatmap of potential defects on the resized original image, while the left
image shows the contour overlay of the heatmap for precise localization of potential defects.

(a) (b) (c) (d)

Fig. 10: Correct Prediction for Nominal Casing - Right image depicts heatmap of potential defects on the resized original image, while the left
image shows the contour overlay of the heatmap for precise localization of defects - The heatmap and segmentation outputs highlight small
potential defective areas and the images were not recognized as defective.

(a) Inaccurate annotation (b) (c) Shadow (d) Hinges

Fig. 11: Incorrect Prediction for Nominal Casing - Right image depicts heatmap of potential defects on the resized original image, while the left
image shows the contour overlay of the heatmap for precise localization of potential defects.



(a) Defective - Defective (b) Defective - Negative (c) Negative - Negative (d) Negative - Defective

Fig. 12: Predictions for the whole roof dataset - Right image depicts heatmap of potential defects on the resized original image, while the left
image shows the contour overlay of the heatmap for precise localization of potential defects.

(a) Dirt (b) Moss (c) An object on the roof (d) Damage

Fig. 13: Correct Prediction for Defective Tiled Roof - Right image depicts heatmap of potential defects on the resized original image, while the
left image shows the contour overlay of the heatmap for precise localization of potential defects.

(a) (b) (c) Shadow (d)

Fig. 14: Correct Prediction for Defective Tiled Roof with Irrelevant Heatmap - Right image depicts heatmap of potential defects on the resized
original image, while the left image shows the contour overlay of the heatmap for precise localization of potential defects.

(a) (b) (c) (d)

Fig. 15: Incorrect Prediction for Defective Tiled Roof - Right image depicts heatmap of potential defects on the resized original image, while
the left image shows the contour overlay of the heatmap for precise localization of defects - The model could not detect defects in a, c and d. In
b the defect is too small.

(a) (b) (c) (d)

Fig. 16: Correct Prediction for Nominal Tiled Roof - Right image depicts heatmap of potential defects on the resized original image, while the
left image shows the contour overlay of the heatmap for precise localization of potential defects.



(a) Shadow (b) Non-common types of roof ceramics (c) Non-common types of roof ceramics (d) Wrong annotation

Fig. 17: incorrect Prediction for Nominal Tiled Roof - Right image depicts heatmap of potential defects on the resized original image, while the
left image shows the contour overlay of the heatmap for precise localization of potential defects.
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