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Abstract—The municipality of Friesland in the Netherlands is researching for a method to quantify the volume of passing cyclists
and determine the proportion of people wearing helmets in response to the rising number of accidents resulting in severe injuries.
The detection and monitoring of cyclists and helmets in public spaces is the main focus of this study. To do this, we introduce our
own dataset made up of three cameras with overlapping field of view, a tracker using a Kalman filter and a Hungarian algorithm,
and a Re-identification study to create feature embedding and compare them to match them with a embedding from a detection in a
different camera perspective. Our findings reveal that cyclist detection is most accurately accomplished from a side view. Moreover,
the application of Re-identification between multiple cameras significantly improves the overall performance of the model, enabling
more precise predictions of the number of cyclists and helmets present within the dataset.

Index Terms—[Object detection, Tracking, RE-ID, Cyclists, Helmets, Yolov5]

1 INTRODUCTION

The Netherlands has long been known for its love of cycling, with its
citizens traveling the greatest distance and making the most trips by
bicycle compared to other countries. However, the rise of the e-bike
has had a significant impact on transportation in the country. In
addition to reducing the use of conventional bicycles, e-bikes have
also led to a decrease in car trips and even affected the use of public
transportation [1].

While the use high degree of cyclists has had many positive effects
on transportation in the Netherlands, there have also been negative
consequences. One of these is a recent increase in fatal injuries
among cyclists. According to a national investigation [2], the number
of fatal bicycle accidents has increased by about 10% since 2015,
with people over 50 being the most affected. Out of the 170 fatalities
that occurred last year, 60 included collisions with automobiles, 42
with fixed objects like buses or trucks, and 68 involved no collisions
at all [3].

In a study by [4], an lower association was found between traumatic
head injuries and individuals who frequently wore helmets, as opposed
to those who did not typically wear helmets. Despite research showing
that proper helmet use can significantly reduce the risk and severity of
head injuries in accidents, helmet adoption rates have remained low.
While helmets do not prevent accidents, they can mitigate the effects
of an accident. According to [5], it is advised to wear a helmet in
order to decrease the quantity of fatalities and traumatic brain injuries
caused by bicycle accidents.

Monitoring the helmet usage in traffic can be done in different
ways. A simple way is to get a team to stand next to the road and do
the counting manually. This is an expensive andt time-consuming
approach. Alternatively deep learning can be used to recognise
cyclists and helmets. Previous research in this topic has been done on
detecting helmet usage among motorcycles [6]. Our particular
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interest is whether a certain perspective favours the tracking and
detection of cyclists and helmets. Additionally we want to apply
Re-identification between the objects seen from various cameras with
the aim to improve the certainty of a cyclist wearing an helmet.

In this paper, our focus is on developing a deep learning and
computer vision system to count bicyclists and determine whether or
not they are wearing helmets. In order to do that we will need to
combine the cyclists in different frames together and detect the cyclist
and helmets in the frames. Doing this for each camera perspective
enables us to make a comparison between the perspectives. Finally,
we aim to combine data from multiple camera views to improve
tracking accuracy. As a result, the following research question will be
addressed:

• What is the performance of object detection and tracking on
cyclists and helmets seen from different perspectives?

• How can Re-identification help in on the counting of cyclists and
helmets in the overlapping view using a multitude of cameras?

This is a complex and challenging task, but one that has significant
potential for improving bicycle safety. By answering this research
question, we aim to contribute by developing a machine learning and
computer vision system for multi object multi camera tracking of
bicyclists which until so far has not been tried.

1.1 Related Work
1.1.1 Motorhelmet detection
The detection of motorcycle helmets is a problem similar to that of
bicycle helmet detection, where the goal is to determine whether or
not the rider is wearing a helmet. Traditional methods typically
employ a two-stage approach, where the first step is to detect the
motorcycle and rider itself from the background. This can be
achieved using background subtraction or some form of segmentation
with techniques such as Gaussian Mixture Model [7]. Another
approach uses classifiers and feature descriptors, such as histogram of
oriented gradients (HOG), scale-invariant feature transform (SIFT),
and local binary patterns [8]. Recent research has explored the use of
wavelet transform combined with random forest for motorcycle
detection [9]. Even though this research had very good results on the
dataset they used the biggest limitation was the accuracy of the
background, where the background subtraction took a long time and
could only find moving objects.



In the second stage, once the rider was detected, [10] made use of
a Convolutional Neural Network (CNN) on the upper one fourth part
of the detection to determine if the rider wore a helmet, their
reasoning was that helmets should be worn on top of their heads and
thus only have to try to detect the helmets there. Opposed to the
previously mentioned studies where they used classifiers such as
Support Vector Machines or K-Nearest Neighbor [11] to detect
whether the rider and/or passengers were wearing a helmet or not.

The aforementioned studies have shown the potential of machine
learning approaches to recognizing motorcycles and helmets,
suggesting new ways to recognize riders and whether they are
wearing a helmet. We seek to extend the well-researched field of
helmet detection to bicycle helmets. Therefore we resorted to similar
problems to find effective approaches. However there remains a need
for further advancements in terms of accuracy and speed [12],
particularly when dealing with challenging environments
characterized by complex backgrounds or occlusions. Detecting
motorcycle helmets, in particular, poses a significant challenge that
necessitates the development of robust and efficient techniques.

1.1.2 Tracking

In the realm of Multiple Object Tracking (MOT), the tracking of
pedestrians is most common [11]. For a number of reasons MOT of
pedestrians is useful for a lot of practical applications, such as cyclist
tracking.Pedestrian tracking is interesting because they are non-rigid
object and have a lot of intra-class variation. Recently, MOT has a lot
of traction and can be implemented in various ways [13].

An architecture (MCMOT) was devised by a Hou. et al. [12] to
combine the inputs from several synchronized cameras with their
intrinsic and extrinsic properties to determine the target location.
Using this approximated location they apply a greedy heuristic to
connect the locations of the different cameras into one. To keep track
of the targets Hou. et al. use a k-shortest path algorithm.
Alternatively another research, [14] showed a approach (MVDet)
based on Feature Perspective Transformation. Instead of making an
anchor box or point, they concatenate the projection of the
convolution feature maps via perspective transformations and use a
trained CNN on the ground plane feature map to extract target
locations.

A more recent approach got introduced by [15]. They make use of
tracklets, which are short series of tracked objects. These contain
information such as appearance coherency and motion properties
which are used to improve the predictions on the objects. Other
approaches are making use off Re-identification based on different
levels of features in the CNN [16]. Using this technique it is possible
to match people based on their appearances using the feature space.
Which was successfully except in the cases where people made
sudden turn or changed their paths when temporary occluded. The
evidence presented in this section suggests that tracking of people is
possible by mapping them on the ground floor and recent studies have
used features of persons to track their movements.

Alternatively Simple Online Realtime Tracking (SORT) [17] got
introduced. Which is a tracking algorithm that only makes use of a
Kalman filter [18] and an hungarian algoritm [19] to track an object.
An improved on SORT was made, called Deep-SORT [20] through
the addition of a cascading association step that makes use of
CNN-based object appearance features. The Mahalanobis distance
between object states and the similarity of the object appearance
features are combined in the data association algorithm, which later
uses the SORT’s data association for unmatched states. Even with
this addition the frame rate was promising on the object tracking
benchmarks.

Although the state-of-the-art techniques discussed in this section
have made notable advancements in helmet detection, motorcycle
detection, and pedestrian tracking, their reliance on a two-stage
approach often leads to time-consuming inference. To address this
limitation, we propose the utilization of YOLOv5 [21], a deep
learning architecture known for its high accuracy and efficient
processing speed. By adopting YOLOv5 for helmet detection, we aim

to improve the real-time inference capability of our system.
Furthermore, we propose the implementation of a variation of

DeepSORT called Norfair [22]. Norfair uses the same algorithms as
DeepSORT with a simple implementation. We anticipate that this
tracking algorithm will provide the necessary capabilities to achieve
accurate and efficient tracking of cyclists in real-time scenarios.

Overall, by combining the speed and accuracy of YOLOv5 for
helmet detection with Norfair, our proposed approach aims to
overcome the limitations of the traditional two-stage methods and
determine which angle gives the most best tracking.

2 MATERIALS AND METHODS

The achievement of the research objectives involved a series of
systematic actions. Initially, a deep learning approach was employed
to detect specific objects within the video frames. This step aimed to
accurately identify and locate the objects of interest, specifically
cyclists and helmets.

Subsequently, an object tracking technology was utilized to
generate a continuous trajectory of bounding boxes for each cyclist
across multiple frames. This tracking technology enabled ongoing
monitoring of the cyclists movement throughout the video sequence.

Furthermore, a comprehensive dataset comprising various
locations and multiple cameras with overlapping views was utilized
to capture extensive information about the objects. Individual models
were trained for each camera to optimize object detection
performance, facilitating the models’ ability to learn from diverse
environments.

Additionally, Re-identification techniques were applied to
integrate information obtained from one camera with data acquired
from another camera, with a shared focus on the same object. This
integration aimed to enhance the accuracy and reliability of object
Re-identification across multiple camera views, thereby improving
the overall tracking performance. See also figure 1

Fig. 1: This diagram shows the steps our algorithm takes to get a count
of cyclists and helmets

2.1 datasets
To facilitate the detection and tracking of cyclists wearing helmets,
three datasets were acquired. The first dataset acquisition site
(hereafter referred to as the bikeroad dataset) was chosen near the
main entry from nearby villages into a city, enabling for the recording
of a large number of cyclists. The second location (hereafter referred
to as the roundabout dataset) was captured at an intersection of
bicycle lanes near a busy roundabout. However, a significant
imbalance was identified in both groups within this dataset, as the
occurrence of helmet-wearing cyclists was quite low. To address this
imbalance, a small group of volunteers rode past the acquisition
location while wearing helmets, allowing us to add more cyclists
wearing helmets to the dataset. Nonetheless, it is critical to recognize
the risk of over-fitting to this specific subset of helmet-wearing
cyclists. To mitigate that a 3rd dataset (hereafter referred to as the
campus dataset) was acquired. This dataset has a higher percentage of
cyclists and helmets while having a smaller variety in cyclists.

The three datasets, to be seen in 3 utilized in this study were
partitioned into separate sets, namely a training set, validation set,
and testing set, following a split of 70%, 20%, and 10% respectively.
This split is quite normal in deep learning, where a large part is
delegated for training and a smaller part for validation. The test
subset will not be used in this research but is included to give a full
overview of the dataset. These datasets were annotated with bounding
box annotations for two distinct classes: cyclists and helmets. It is



Table 1: the amount of images, cyclist objects and helmets in the
different datasets

Locations images helmets cyclists
Bikeroad train 6300 184 937

val 1800 117 347
test 900 62 498
total 9000 363 1782

Roundabout train 2660 765 1651
val 760 179 739
test 380 272 1214
total 3800 1216 3604

Campus train 1960 898 2102
val 560 247 594
test 280 176 476
total 2800 1321 3172

Campus testing set images helmets cyclists
Cam1 1494 874 2197
Cam2 1494 840 2972
Cam3 1494 844 1334

noteworthy that all datasets were acquired under consistent lighting
conditions, specifically during the early morning, characterized by
favorable weather conditions devoid of rain, fog, or clouds. Due to
ethical considerations, precautions were taken to ensure compliance
with the General Data Protection Regulation [23]. Meaning that this
dataset is not open to the public and cannot be shared.

The cyclist and helmets annotations are bounding boxes in all of
the aforementioned datasets, in order to evaluate the tracking
capability of our proposed model we also need to include a tracking
ground truth and consecutive images. Therefore we another
acquisition was made at the campus locations (hereafter referred to as
the campus testset) which we annotated with the included tracking id.
This aquisition captures 10 cyclists that drive through the dataset of
which 6 are wearing helmets.

We produced these three datasets in an effort to create a dataset
with a balanced amount of cyclists and helmets. The number of
images, helmets and cyclists in the images can be seen in Table 1.
The campus dataset offers a higher percentage of helmet-wearing
cyclists while presenting a more condensed range of cyclist variants
than the other two datasets, which have a broader pool of cyclists but
a lower frequency of helmet-wearing cases. These datasets will be
used in this study for training and testing detection models, and the
campus testset will be useful for the evaluation of the tracks. A
snapshot of the location and camera perspectives can be seen in Fig 3.

2.1.1 Camera setup
This research requires the creation of a multi-camera dataset with
synchronized footage. The synchronization of the multi-camera
dataset was achieved through a post-processing approach.
Specifically, the first frame in which a visual clue became evident in
each camera’s footage was selected as the reference point for
synchronization. This methodology ensured temporal alignment
across the cameras, allowing for subsequent analysis and
interpretation of the synchronized data. The cameras utilized are
GoPro Hero 7 cameras, capturing 4k images every half second. The
cameras will be set to take time-lapse images at every half second. To
maintain consistency in the camera setup, all cameras were
positioned to focus on a shared central point, maintaining a fixed
distance of 4 meters from that center point. Specifically, two cameras
were oriented towards each other, but their positions were adjusted to
be situated 1 meter away from the side of the bike lane, while still
maintaining a 4-meter distance from the central point. The third
camera was positioned to maximize its perpendicular alignment
relative to both cameras, also maintaining a 4-meter distance from the
central point. This configuration (see Fig. 2) ensured a standardized
and synchronized perspective for capturing cyclist and helmet data
across the datasets.

Fig. 2: This shows the general camera setup used to capture the data
that we use in the datasets.

2.2 Object Detection
Yolov5 [21] is a state-of-the-art object detection algorithm that builds
upon the previous success of the YOLO (You Only Look Once)
family of models. It is a one-stage detector that achieves high
accuracy and inference speed, making it a popular choice in real-time
applications. Yolov5 uses a deep neural network to predict bounding
boxes and class probabilities directly from an input image. It
introduces several improvements over previous versions, including a
new backbone architecture, a more efficient anchor box assignment
strategy, and an improved loss function. These improvements result
in higher accuracy and faster training times compared to previous
YOLO models. The trained Yolov5 models will be used to detect the
cyclists and helmets in our dataset and be evaluated in the
experiments.

2.3 Tracking
The tracking approach utilized in this study is based on Norfair [22]
and an application of SORT (Simple Online and Realtime Tracking)
[17]. Norfair is composed of four components, including detection,
estimation, data association, and track-ids. In each frame, a detection
algorithm detects objects, and the estimation component predicts the
location of the objects in the subsequent frame, which is also called
an estimation. If the prediction matches a detection in the next frame
the detections become a series called a track. This estimation is done
by a Kalman filter module which uses a linear velocity module to
represent the motion of each seperate object. The Kalman filter is
initialized with zero velocity in any direction and with a very high
uncertainty. The predict step predicts the next state of the track based
on the previous bounding box and the update step estimates the
system’s current state based on the measurement at that time step.

To determine if there is a match, SORT uses a hungarian algorithm
for its data association. Unlike SORT, which uses a hungarian
algorithm for data association, Norfair utilizes a custom algorithm for
matching predictions and estimations. This approach takes into
consideration cases where minimizing the global minimum distance
may not yield optimal results. The purpose of this approach is to
prevent the algorithm from excessively prioritizing the minimization
of global distance, which could lead to erroneous matches between
objects that should not be associated. Instead, Norfair uses a
matching strategy that involves sequentially selecting predictions and
estimations based on their overlap, starting from the global minimum
and progressing to the second minimum, and so forth. This sequential
selection process continues until the minimum exceeds the maximum
threshold, at which point we no other predictions and objects to be a
match will be considered a match.

The last aspect of the tracker that needs to be discussed is the
management of the tracks. For each successful detection match, a
counter associated with a tracked object is increased. This counter
increases by one when the association algorithm denotes 2 objects to
be a match. On the other hand, we decrease the counter by one when
a frame does not produce a match. The object is regarded as active



(a) bikeroad dataset camera perspective 1 (b) bikeroad dataset camera perspective 2 (c) bikeroad dataset camera perspective 3

(d) roundabout dataset perspective 1 (e) roundabout dataset perspective 2 (f) roundabout dataset perspective 3

(g) Campus dataset perspective 1 (h) Campus dataset perspective 2 (i) Campus dataset perspective 3

Fig. 3: The dataset for all locations showing the 3 different perspectives

once it has reached the initialization delay, which denotes a sufficient
number of matches. With each succeeding match, the active object’s
counter adds hits to its total until it reaches the counter’s
predetermined upper limit. During tracking of an active object, if the
counter reaches zero, the object returns to the RE-ID phase. The
object will wait during this stage up to a number of frames to be
matched with one of the initializing objects. If a match is found, the
younger object is merged into the older one and then deleted from the
tracking system. Otherwise, the older object is reactivated. Tracks
that do not get matched for a certain amount of frames get removed.
The states are visualised in Figure 4.

Additionally, We merged the helmet detections with the cyclist
class during tracking. This was done to minimize the amount of
tracking that is needed and due to the Kalman filter, which has
difficulties with sudden and abrupt movements. Helmets relative to
cyclists are quite small and could move in unsuspecting ways. This
constraint was handled using a heuristic. A helmet was considered to
be attached to a cyclist if its center point fell within the boundaries of
the cyclists middle and highest points in the vertical plane as well as
the cyclists width in the horizontal plane.

2.4 RE-ID
For the Re-identification we make use of the torchreid [25] research.
This is an algorithm that extracts features from bounding boxes and
use these features to make an estimation on the object seen from other
camera setting. In this paper we will use torchreid to determine if
objects obtained from different cameras are the same object. Models
used to get the features are pretrained classifiers such as Resnet50,
Densenet, inception and Xception and OSNet. In this study we will

utilize OSNet to create the embedding and use the torchreid approach
to compare the embeddings with each other. We will use OSNet since
it has been specially trained for RE-ID purposes.

OSNet [26] is a lightweight model that has been specifically made
for Re-identification using RE-ID networks. In order to obtain these
multiscale features, OSNet employs various convolutional layers and
then introduces an aggregation gate, which fuses the multiscale
features with channel-wise weights to produce an embedding with the
shape of 1 x 2048. We will use these computed embeddings in our
research to compare them with one another. To do that we calculate
the squared euclidean distance between the objects that could be
match. By expanding the matrix’, it is possible to compare two tracks
of different lengths to one another. To ensure reliable matching, we
impose a restriction where tracks must have an overlap in at least one
frame, utilizing the synchronized input. For example, if tracks 6 and
24 are present in frame 70 but captured by different cameras, their
embeddings are extracted, and the squared Euclidean distance
between them is calculated. This process is repeated for all
overlapping tracks captured by different cameras.

To establish one-to-one track matching between cameras, we
employ the Hungarian algorithm. This algorithm minimizes a cost
function to determine the optimal pairing of tracks between cameras.
By minimizing the total embedding distances, each track in one
camera is effectively matched to a track in the other camera. This
approach enables us to establish correct associations between tracks
from different camera perspectives, contributing to a comprehensive
understanding of cyclist and helmet.



Fig. 4: The process an object goes through once it gets detected and
initialized. [24]

2.5 Metrics
In computer vision, evaluating the performance of object detection
models requires the use of several metrics. In this paper, we employ
precision, recall, and the F1 score to quantify the effectiveness of our
object detection model.

Precision, also known as positive predictive value, measures the
proportion of correctly (with an overlap with the ground truth of
50%) predicted positive instances out of the total instances predicted
as positive . It is computed using the following equation:

Precision =
TruePositives

TruePositives+FalsePositives
(1)

Recall, also known as sensitivity or true positive rate, assesses the
proportion of correctly predicted positive instances out of the total
actual positive instances. The equation for recall is as follows:

Recall =
TruePositives

TruePositives+FalseNegatives
(2)

The F1 score is a harmonic mean of precision and recall, providing
a single metric that balances both measures. It is calculated using the
following equation:

F1 = 2× Precision×Recall
Precision+Recall

(3)

These metrics collectively provide a comprehensive evaluation of
the object detection performance, taking into account both the
precision and recall aspects. The precision metric emphasizes the
accuracy of positive predictions, recall highlights the ability to detect
positive instances, and the F1 score combines both measures to offer
a balanced assessment.

The evaluation of tracking results involves the classification of
potential errors between predicted and ground-truth tracks into three
distinct types: detection errors, localization errors, and association
errors. [27].

Detection errors refer to situations where the tracking algorithm
fails to detect an object or incorrectly identifies a non-existent object.
These errors can occur when the object is occluded, partially visible,
or has a low contrast with the background.

Localization errors occur when the predicted bounding box or
position of the object deviates significantly from the ground truth.
Such errors can arise due to inaccurate estimation of object
boundaries, perspective distortions, or imprecise localization
algorithms.

Association errors occur when the tracking algorithm incorrectly
assigns detections to tracks or fails to associate detections with the
correct tracks. These errors can occur when objects are in close
proximity, undergo significant appearance changes, or exhibit similar
motion patterns.

In order to calculate these errors, we employ a set of established
tracking metrics. Firstly, the Multi Object Tracking Accuracy
(MOTA) and Multi Object Tracking Precision (MOTP) metrics are
calculated. These metrics are widely used for assessing the
performance of multiple object tracking algorithms and are described
in the clearMOT metrics framework [28]. Additionally, we evaluate
the tracker’s output based on the IDentity f1 (IDF1) score, as defined
in [29]. First we will look into how MOTA and MOTP are calculated
and what tracking error they evaluate. after that we will look at how
IDF1 does it differently and

MOTA primarily focuses on detection performance, considering a
bijective one-to-one mapping between the ground truth set (GT) and
the predictions. True Positives (TP) are the predictions that correctly
match the ground truth, while False Positives (FP) correspond to
predictions without any matching ground truth, and False Negatives
(FN) represent ground truth instances without corresponding
predictions. The tracking accuracy is then computed by accounting
for these ID switches (IDS). They occur when the tracker mistakenly
assigns the different ID to a ground truth track then previously was
assigned to it. The MOTP metric complements MOTA by specifically
considering localization errors, providing a comprehensive evaluation
of the tracker’s performance using the MOT metrics [28].

MOTA quantifies the tracking accuracy at the detection level, with
a higher value indicating better performance. It assesses the
percentage of false positives, false negatives, and mismatches in the
tracking results of a multiple object tracking algorithm. See Equation
4

MOTA = 1−∑
i

FNi +FPi + IDSi

GTi
(4)

where FNi is the number of false negatives in image i, FPi is the
number of false positives, IDSi is the number of identity switches or
mismatches in image i, and GTi is the number of ground truth objects
in image i.

MOTP measures the average similarity error S between the
predicted and ground truth object locations, indicating the tracking
precision of the algorithm. A higher value indicates better tracking
precision. See Equation 5

MOT P =
1

T Pt
∑

i
Si (5)

where T Pt is the number of True Positives over all the images t , S
is the similarity score for objects in image i. In our research the score
is calculated as a intersect over union (IoU). The output results in the
average IoU over all correct predictions.

In order to calculate the IDF1 score, the ground truth trajectories
and predicted trajectories are matched in a one-to-one manner. This
matching process is performed using the Hungarian algorithm, which
calculates the number of true positives (TP), false positives (FP), and
false negatives (FN). The goal is to minimize the occurrence of FP and
FN resulting from the trajectory matching.

Once the matching is completed, the metrics of identity true
positive (IDTP), identity false positive (IDFP), and identity false
negatives (IDFN) are determined. These metrics are then used to



calculate the identity recall (IDR), identity precision (IDP), and
identity F1 score (IDF1). The IDR represents the proportion of
correctly identified trajectories out of all the ground truth trajectories.
The IDP indicates the accuracy of the predicted trajectories in terms
of correctly identifying the ground truth. The IDF1 score combines
both recall and precision, providing a single measure to evaluate the
overall performance of the trajectory matching process [29]. The
Equations used to get to these numbers are here Equations 6, 7, 8.

IDR =
IDT P

IDT P+ IDFN
(6)

IDP =
IDT P

IDT P+ IDFP
(7)

IDF1 =
IDT P

IDT P+0.5∗ IDFP+0.5∗ IDFN
(8)

3 EXPERIMENTS

The objective of the first experiment is to investigate the impact of
utilizing different cameras for detecting cyclists and identifying
helmets. For this experiment a Yolov5s model is trained on each
camera for each location separately. This way we can compare the
performance of the cameras to each other. We will evaluate the results
on the campus testset consisting of multiple cyclists, some wearing
helmets and others not. For the evaluation we employed the precision,
recall and F1-score metrics described in the Metrics section.

To assess the effectiveness of the models tracking performance, a
second experimental setup has been devised. The primary aim is to
accurately track all passing cyclists, as well as associating each
helmet with the corresponding cyclist. This tracking process will
utilize the individual video frames and the bounding boxes obtained
by the trained object detection models. Additionally we generate
tracking bounding boxes around the detected cyclists in the images.
This way we can qualitatively evaluate the performance of the model
as well. The evaluation of detected helmets will be done in the later
experiment. To assess the effectiveness of the models and evaluate
tracking performance quantitatively. The resulting tracks are then
evaluated individually, employing the dedicated evaluation metrics as
described in the materials and methods section.

The third experiment is dedicated to Re-identification (RE-ID),
with the objective of linking tracks generated from the tracker with
different cameras perspectives in a one-to-one manner. The main aim
is to establish corresponding track numbers for successful linking.
Through this linking process, the number of detected helmets within
the linked tracks can be extracted. The video output of the tracker
plays a critical role in this step, enabling the manual matching of
track IDs from different cameras to establish the most appropriate
links between tracks. This manual linking process serves as the
ground truth for the experiment. The results of RE-ID will undergo
thorough analysis and evaluation to assess the overall effectiveness of
the framework, including detection, tracking, and RE-ID.
Specifically, the analysis will focus on correctly detecting the number
of passing cyclists and determining whether the linking of tracks has
improved the prediction of cyclists wearing helmets also a prediction
of helmet will be made based on the amount of frames the track are
detected during this experiment we also look in increments of 10%
which threshold yields the best performance.

3.1 Results

This subsection presents a comprehensive overview of the
experiments carried out, outlining the applied methodology as
described in the previous sections. The results obtained from the
experiments are briefly summarized, highlighting the capabilities of
object detection, tracking, and Re-identification (RE-ID). Notably,
special attention is given to the RE-ID process, as it directly
addresses the second research question.

3.1.1 Object detection
The results of the object detection experiments are presented
separately for each location: campus, roundabout, and bike-road (as
shown in Table 2). The initial hypothesis presumed that the similarity
in camera positions and road lanes across different locations, as
depicted in Figure 2, would result in comparable performance of the
trained models in detecting cyclists and helmets across the various
locations. Nevertheless, the experimental results contradict this
assumption.

Table 2: Results of object detection on different datasets

Yolov5s Campus Dataset
Camera Precision Recall F1 score
cam1 45.4% 6.3% 11.1%
cam2 71.3% 55.3% 62.3%
cam3 97.9% 77.3% 86.3%

Roundabout Dataset
Camera Precision Recall F1 score
cam1 16.1% 7.8% 10.5%
cam2 93.9% 18.5% 30.9%
cam3 96.2% 38.4% 54.9%

Bikeroad Dataset
Camera Precision Recall F1 score
cam1 97.9% 3.3% 6.3%
cam2 90.7% 17.8% 29.8%
cam3 98.4% 26.0% 41.1%

In the presented table, it is evident that the model for camera 3
exhibits the highest performance in terms of precision, recall, and
F1-score. Specifically, the campus dataset demonstrates the highest
F1-score, suggesting that the model performs most effectively when
detecting objects from a perpendicular view. Camera 2, on the other
hand, shows a slightly lower performance compared to camera 3 in
the roundabout dataset, with a 3% difference. However, camera 2
exhibits a considerably low recall of 18.5%, resulting in a F1-score of
30.9%. This pattern is also observed in the bikeroad dataset, where
the precision stands at 90.7% but the recall is notably low at 17.8%.
These findings indicate that while the model’s predictions are mostly
accurate, it fails to detect a significant number of objects that are
indeed present

In the results section, it was evident that camera 1 displayed the
lowest F1-score across all datasets, accompanied by consistently low
recall values, for the campus roundabout and bikeroad, 6.3%, 7.8%
and 3.3% respectively. Consequently, camera 1 was deemed
unreliable for further analysis due to its unexpected and inconsistent
performance. The subsequent RE-ID experiments focused
exclusively on cameras 2 and 3. The decision to exclude camera 1
was prompted by the observed anomaly, which could potentially be
attributed to a rotational offset of approximately 30 degrees
clockwise in the testing dataset.

It is worth noting that in addition to the object detection findings,
a noteworthy observation is the slightly higher recall achieved in the
roundabout dataset compared to the bikeroad dataset. This observation
is likely attributed to the greater variation in angles, distances, and
lighting conditions present in the roundabout dataset.

3.1.2 Tracking Results
In the 2nd experiment the aim is to track the cyclist objects that the
object detector detects. Therefore we employ the tracker described in
the methology on the campus dataset. These results will be evaluated
using the tracking evaluation metrics described in the Metrics section.
The resulting Metrics by the tracker can be seen in Table 3.

In the table you can see that the IDF1 score for the tracking in the
frames captured by camera 2 is 34.5% and for the frames captured
with camera 3 is 56.4%. This shows that the tracks in camera 3 can
be more easily matched with the ground truth. The IDP of camera 3 is
80.2% which indicates that the predicted bounding boxes on average



Table 3: Results of the tracking on the campus dataset.

Campus IDF1 IDR IDP MOTA MOTP precision recall Idsw Fragmented
cam 1 1,6% 1,1% 100,0% 0,9% 49,0% 100,0% 1,1% 1 1
cam 2 34,5% 34,3% 34,7% 18,5% 67,9% 60,0% 59,2% 39 50
cam 3 56,4% 45,1% 75,7% 54,9% 80,2% 96,4% 57,3% 5 4

match for 80.2% with the ground truth. Comparing this to camera
2 with 67.0% shows that the model in camera 3 can more precisely
detect cyclists in the frames. Additionally the MOTA for the model for
camera 3 with a performance of 54.9% shows an increase compared
to the model for camera 2, which has a MOTA of 18.5%

An analysis of the generated video outputs revealed that camera 2
encountered numerous IDS and fragmentations compared to camera
3, 39 IDSW and 50 fragmentation compared to 5 IDS and 4
fragmentations. These issues arose primarily in the distant
background, as a result of pixelated object representations and
frequent occlusions. Consequently, the tracks often disappeared and
reappeared in later frames, preventing successful connection through
the association component within the tracker. A specific example
illustrating the occurrence of identity switches in camera 3 can be
seen in Fig. 5. Furthermore, an example showcasing both the
fragmentations and identity switches in camera 2 can be observed in
Fig. 6.

These findings underscore the challenges associated with the
performance of camera 2 in the tracking process, primarily due to the
specific characteristics of its background and the resulting occlusions.
On the other hand, camera 3, demonstrated more stable tracking
performance and exhibited fewer issues related to identity switches
and fragmentations.

Overall, the results from the tracking experiments validate the
previous observations made during the object detection phase and
provide insights into the specific challenges and limitations
encountered by each camera during the tracking process.

(a) 2 Detected cyclists with respectively
track id 10 on the left and 11 on the right

(b) 2 Detected cyclists with respectively
track id 7 on the left and 9 on the right

Fig. 5: The above images show the IDS happening in camera
perspective 3. The cyclists move over the road from right to left. The
tracker losses the objects behind the tree for a moment and assigns a
new id to the same object.

3.1.3 Re-identification
The results of the RE-ID experiment are presented in Table ??. This
Table shows the linked tracks connected by the Hungarian algorithm
based on the embedding distanced computed and extracted by the
RE-ID software. The table also shows the prediction whether the
cyclist wears a helmet. The threshold of 40% is shown, other records
can be found in Appendix 6. According to Table ??, a total of 10
cyclists were detected passing by, with 5 of them wearing helmets.
However, the ground truth is that there are 9 cyclists passing by, of
which 6 were wearing helmets. The presence of additional tracks can
be attributed to identity switches, whereby a single ground truth track
is associated with multiple detection track IDs. Regarding the
erroneous prediction regarding the helmet status occurred in track 8,
the framework determines that the cyclist is not wearing a helmet,
whereas in reality, the cyclist does wear a helmet. Table 5 provides
quantitative results from the RE-ID experiment, offering further

insights. This Table shows that in track-ID 1 is matched to track-id 14
where track-ID 1 appeared in 87 frames and got 58 helmet detections
in those frames. For track-ID 14 the number of frames detected was
87 as well with only 37 helmet detection. This shows that the
percentage helmets detected based on the total number of frames is
lower in camera 2 for the linked objects 1 and 14. This trend
continues throughout all the links made by the RE-ID software.
Additionally it is good to note that when a cyclists doesn’t not wear a
helmet in both linked track-ids the number of detected helmets is also
low. as can be seen in both track-ID 11 and 12. These tracks link with
track-IDs 44 and 49 which have all helmet detections below 3.

4 DISCUSSION

In this study, we researched a comprehensive framework utilizing
YOLOv5 as a detector, along with Norfair and torchreid as tracking
and Re-identification systems, respectively. This framework is
utilized to detect, track, and Re-identify cyclists and helmets across
multiple cameras. Our results demonstrated the effectiveness of this
framework in counting cyclists and determining the percentage of
helmet usage. During the course of our research, an important finding
emerged concerning the performance of the model assigned to
camera 2. It was observed that this particular model yielded less
favourable results than anticipated, this was likely due to the
significant occlusions encountered throughout the detection and
tracking process. This finding highlights the impact of occlusions on
the tracking performance of the model associated with camera 2. The
findings from the Re-identification process indicate that accurate
helmet detection percentages were achieved through successful
linking of the correct tracks. The analysis highlights the substantial
contribution of the model associated with camera 3 in this process.
Furthermore, the model assigned to camera 2 played a validating role,
supporting the results obtained from the camera 3 model. The
consistent trend observed in the findings reveals a lower count of
helmets when cyclists are not wearing them, and conversely, a higher
count when helmets are present. This consistency reinforces the
effectiveness of the framework in accurately identifying the presence
or absence of helmets.

These findings demonstrate the potential of the proposed
framework for cyclist detection and identification tasks. Moving
forward, it is crucial to focus on improving the tracking capabilities
of the framework. This could involve enhancements in the diversity
an availability of cyclist and helmet datasets or to the tracking RE-ID
algorithm to improve the tracking through occlusions or the
implementation of measures to minimize the field of view and the
potential for occlusions. Furthermore, this work sets the stage for
future advancements aimed at refining tracking capabilities and
expanding datasets to ensure effective cyclist and helmet detection in
different locations.

5 CONCLUSIONS

In this study, our aim was to develop a framework for detecting
cyclists and identifying their helmet usage using object detection,
tracking, and Re-identification techniques. We employed a Yolov5
model to detect cyclists and helmets from three different camera
perspectives, with the perpendicular view yielding the most favorable
results. However, challenges were encountered with the second
camera perspective, primarily attributed to occlusions and distant
objects leading to pixelation.

In the final experiment, we implemented Re-identification between
the second and third camera perspectives. The results demonstrated
that after association, the model exhibited a small deviation of only



(a) Multiple detected object objects in the 2nd camera perspective (b) Multiple detected object objects in the 2nd camera perspective

Fig. 6: The images above show an example of the id switching. All these cyclists go right to left. An id switch can be seen in image 6b. Here,
object 18 is reconnected with the cyclist with trackid 16 in the earlier image 6a. Another observation you can make is that the cyclists with track
id 17 and 16 in image 6a are currently occluded and result in fragmentations since they wont reconnect to any other objects and the ground truth
track havent finished

Table 4: The Table below shows track ids detected in both cameras. The track ids in the same column are matched by the Hungarian algorithm
to be the same cyclist. The last row signifies whether the cyclist has a helmet.

Campus Associated track ID
cam3 1 2 4 5 7 8 10 11 12 13
cam2 14 15 22 29 28 21 30 44 49 51
Helmet prediction 40% TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
Correct Match Correct Correct Correct Correct Correct Correct Miss Correct Correct Correct
Correct Helmet prediction Correct Correct Correct Correct Correct False Correct Correct Correct Correct

one incorrect track, successfully generating nine correct tracks out of
a total of ten. Additionally, the framework accurately identified the
number of helmets in nine out of the ten tracks, further highlighting its
efficacy.

Overall, our study presents a comprehensive framework for cyclist
detection, tracking, and Re-identification. While certain limitations
were identified, such as occlusions impacting tracking performance,
our proposed framework showcases promising accuracy in detecting
cyclists and determining their helmet usage. Further refinements and
enhancements to address the identified limitations could lead to
improved performance and practical applications in cyclist safety and
monitoring systems.

6 FUTURE WORK

To further enhance the performance and applicability of the
framework, several areas for future work can be identified. First,
expanding the dataset to include diverse environmental conditions,
cyclist behaviors, and camera perspectives can improve the
generalization capabilities of the object detection models. This
dataset expansion will ensure the robustness of the framework across
various real-world scenarios. Efforts should also be directed towards
developing advanced techniques to handle occlusions during the
tracking process. Exploring multi-object tracking algorithms capable
of robustly dealing with occlusions can significantly improve tracking
accuracy and reduce fragmentation and id switches.

Refining the Re-identification algorithms is crucial for addressing
challenges associated with occlusions and fragmented tracks.
Including spacial information, cyclist trajectory and appearance
consistency, can enhance the accuracy of Re-identification and reduce
false associations. Moreover, optimizing the framework for real-time
implementation in live monitoring systems or intelligent traffic
management is essential. Exploring hardware acceleration options
can facilitate efficient real-time processing and enable the framework
to perform effectively in real-world scenarios.

Finally, investigating the integration of the proposed framework
with existing cyclist safety systems can provide insights into its
potential impact on cyclist safety and accident reduction.
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Table 6: Calculation to determine which threshold yields the best
results

Calculation to determine which threshold yields the best results
cam3 1 2 4 5 7 8 10 11 12 13
cam2 14 15 22 29 28 21 30 44 49 51 number of cylcists with a helmet
10% TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE 7
20% TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE 6
30% TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE 6
40% TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE 5
50% TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE 3
60% FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE 1
70% FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 0
80% FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 0
90% FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 0
100% FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 0

A HELMET DETECTION


