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Abstract— Despite the notable accomplishments of deep object detection models, a major challenge that persists is the requirement
for extensive amounts of training data. The process of procuring such real-world data is a laborious undertaking, which has prompted
researchers to explore new avenues of research, such as synthetic data generation techniques. This study presents a framework
for the generation of synthetic datasets by fine-tuning pretrained stable diffusion models. The synthetic datasets are then manually
annotated and employed for training various object detection models. These detectors are evaluated on a real-world test set of 331
images and compared against a baseline model that was trained on real-world images. The results of this study reveal that the object
detection models trained on synthetic data perform similarly to the baseline model. In the context of apple detection in orchards, the
average precision deviation with the baseline ranges from 0.09 to 0.12. This study illustrates the potential of synthetic data generation
techniques as a viable alternative to the collection of extensive training data for the training of deep models.

Index Terms—Dataset Generation, Stable Diffusion, DreamBooth, Object Detection

1 INTRODUCTION

Over the past decade, deep learning has revolutionised the field of
computer vision. First, in 2012, the AlexNet [1] architecture sparked
a resurgence of interest in Convolutional Neural Networks (CNNs)
for image classification. Subsequently, object detection saw
advancements through the introduction of Region-based
Convolutional Neural Networks (R-CNNs) [2] and You Only Look
Once (YOLO) models [3]. Likewise, image segmentation gained
popularity with the introduction of SegNet [4] and Mask R-CNN [5].
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Unfortunately, these models share a common limitation, as their
effective training depends heavily on access to a substantial number
of images [6], often referred to as big data.

Within the computer vision community, considerable efforts are
currently being devoted to acquiring representative datasets for
training deep models [7, 8, 9, 10]. This process involves not only
obtaining high-quality images but also the need to manage selection
biases, address outliers, and ensure annotation consistency [11]. Now,
suppose it was possible to leverage these deep models effectively
without being limited by the availability of extensive datasets. Our
paper introduces ”Genfusion”, a framework that effectively combines
recent advances in image synthesis to generate images for training
deep models.

Diffusion models [12] have gained recent attention due to their
impressive text-to-image synthesis capabilities, as evidenced by
notable architectures like DALL-E 2, Stable Diffusion, and Imagen
[13, 14, 15]. While these models have demonstrated unprecedented
results, a significant challenge remains in accurately generating new
renditions of identical objects [16]. However, this capability holds
paramount importance for dataset generation where images must
closely resemble specific real-world inference scenarios. To address
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this, we leverage a pretrained diffusion model [14] and employ a
fine-tuning technique that operates with a limited set of real-world
images [16], thereby enabling the generated images to align with a
given real-world setting.

To demonstrate the feasibility of this approach, the study takes on
the task of apple detection, leveraging a well-established benchmark
dataset [17]. Our results demonstrate the groundbreaking potential of
these diffusion models for artificial dataset generation, particularly for
challenging and data-scarce real-world applications.

This leads to the following research questions:

• How can a pretrained diffusion model be fine-tuned to generate
a dataset representative of a specific real-world scenario?

• How does the performance of an object detector trained on data
generated with Genfusion compare to one trained on real data
when tested in a real-world scenario?

1.1 Related work
Image synthesis is the process of artificially producing images that
have a particular desired content. The task is comparable to the
inverse of the process of image classification, specifically, the
generation of an image with the visual characteristics associated with
a particular label. The generation of pictures of non-existing human
faces is a well-known example [18]. The advent of Generative
Adversarial Networks (GANs) [19] in 2014 marked a significant
breakthrough in image synthesis, leading to widespread research in
the field [20, 21, 22, 23]. Although recent studies have shown GANs
to be successful in generating high-quality images [24], they still face
challenges with training stability, convergence, and synthesising
diverse datasets with many subject types [25, 26].

In 2015, diffusion probabilistic models [12] were introduced as
another type of generative model. Subsequently, numerous
advancements were suggested under the name of denoising diffusion
probabilistic models [27, 28], which we will refer to as diffusion
models for brevity. Diffusion models have demonstrated high-quality
results in image synthesis on datasets with diverse subjects, often
outperforming GANs [26]. Conditional image synthesis, a method
that generates images based on specific constraints or additional
information, is where these models have shown unprecedented
performance [13, 14]. User-provided text prompts are an intuitive
way to formulate these constraints, and with the introduction of CLIP
[29], which encodes natural language in a latent space specifically
targeted towards text-to-image correspondence, text-to-image
synthesis has become a prominent research direction.

Text-to-image synthesis in general has been researched since 2015,
with early proposals utilising Recurrent Neural Networks (RNNs)
and Auto Encoders (AEs) [30]. In 2021, significant improvements
were achieved with VQ-GAN [24], a GAN-based approach, and
DALL-E [31], which applied transformers [32] from natural language
processing. GLIDE [33] was the first study to integrate text-to-image
synthesis with diffusion models, showing even greater diversity in
generated images. However, the computational resources required to
train the model were extensive, which was a limitation of GLIDE.
Shortly after, latent diffusion models [14] were introduced. Inspired
by VQ-GAN [24] they utilised a Vector Quantized Variational
Autoencoder (VQ-VAE) [34] to perform the diffusion within a
compressed latent space, reducing training time. Stable Diffusion is a
continuation of the latent diffusion study that incorporates several
improvements from related research [35]. Stable Diffusion, the only
open-sourced pretrained model, will be used for this research, but our
approach is not limited to this model.

1.1.1 Fine-tuning
There is a relatively small body of literature that is concerned with
fine-tuning text-to-image diffusion models for subject-driven
generation [36, 37, 16]. Subject-driven generation refers to the task of
generating new images of a subject in different contexts given only a
few images (∼3-5) of that subject. Despite the current outstanding

results of state-of-the-art text-to-image models, generating new
renditions of the exact same subject, while retaining its critical visual
features, is highly challenging [16]. A recent study proposes a
technique to address this challenge via a textual inversion method
applied to a pretrained diffusion model [36]. Textual inversion refers
to searching for the optimal embedding to represent visual concepts,
such as objects or styles, and connecting this to new pseudo-words
(e.g. ’A S∗ dog’ with S∗ denoting the pseudo word). Unfortunately,
this approach is limited by the original output domain of the model.
Another study proposes a different methodology, namely Aesthetic
Gradients, that seeks to personalise the text-to-image model by
confining its scope to the domain of aesthetic alterations [37]. What
sets this approach apart is that the authors retrain the text-encoder
exclusively, without necessitating any further fine-tuning of the
weights in the diffusion model. However, since this study is limited to
aesthetic modifications, it does not offer the generality that is
necessary for our research.

A study that stands out from the previously mentioned studies is
’DreamBooth’ [16]. While this study shares similarities with the
previously discussed publications in that it employs pseudo-words to
describe the subject, the novelty of this method is evident in the fact
they embed the subject within the output domain of the model via
retraining on a small selection of images. This differs from [36],
which merely searches for an embedding in the original output
domain that closely resembles the subject. The key challenge with the
retraining approach is the issue of overfitting and language drift
[38, 39]. This refers to the issue where a language model, which was
pretrained on a vast text corpus, experiences a gradual decline in its
syntactic and semantic proficiency in the language after fine-tuning
for a specific task. This degradation occurs as the model’s learning
prioritises improvement in the targeted task at the expense of general
language knowledge. This is particularly problematic for
text-to-image generation, as the model may learn to create images of
a specific person, but forget the general concept of a person. The
DreamBooth study proposes a class-specific prior preservation loss
as a regularisation term for the original loss function when
fine-tuning for subject-driven generation. This approach incentivises
the model, when the pseudo-word is not present, to still produce a
variety of distinct images belonging to the same class as our subject.

1.2 Contribution
Our work contributes to the field of computer vision by showing that
we can combine these techniques into one dataset generation
framework. The output of a Stable Diffusion network can be
fine-tuned using DreamBooth to replicate images of a specific
real-world scenario, which can then be used to train deep learning
models. We demonstrate the versatility of this fine-tuning approach
by illustrating that it has the capacity to replicate a diverse range of
images, rather than solely synthesising images depicting the same
object. Additionally, we provide a preliminary analysis on fine-tuning
these models for bounding box generation. To demonstrate the
feasibility, we will use the YOLOv5 [40] and YOLOv8 [41] object
detectors due to their fast inference time as we argue that our use case
is for a real-time fruit-picking application. Note that any alternative
object detector capable of detecting small objects could be used, but
the choice of detector is beyond the scope of this study.

2 METHODOLOGY

To enhance the practicality of training deep object detection models,
we observe that the data acquisition process is among the most
time-intensive tasks. To mitigate this limitation, we present a
multi-stage approach. Initially, we artificially generate training
datasets based on a select few real-world images and DreamBooth
fine-tuning [16]. Following this, we manually annotate the generated
images and train various YOLOv5 [40] and YOLOv8 [41] object
detectors. For evaluation, we test the detectors on the MinneApple
apple detection benchmark dataset [17]. In addition, a preliminary
investigation is presented to determine how the diffusion model could
possibly be fine-tuned to automatically create annotations.



Fig. 2: The graphical illustration of diffusion models with their fixed forward process q(xt|xt−1) and learnt backward process pθ(xt−1|xt).
Apple tree illustration adapted from MinneApple [17]

2.1 MinneApple Dataset

The MinneApple dataset [17] is an apple detection dataset with a
collection of 1001 tree images captured in an apple orchard with both
green and red apples at varying growth stages, shadings and
occlusions. The dataset was published by the University of
Minnesota, and data was collected over multiple days to obtain
diverse illumination conditions. The image resolution is 1280 × 720
pixels, and the dataset only annotates apples in the foreground while
leaving those on the ground and trees in the background unmarked.

To ensure the independence of the test set, the dataset was
partitioned into two subsets: a training set consisting of 670 images
acquired in 2015, and a testing set consisting of 331 images acquired
in 2016. We further divided the training images into a 536-image
training set and a 134-image validation set. It is noteworthy that the
original training set has an uneven distribution of green and red
apples, resulting in our training set having 54 trees with green apples
and 482 trees with red apples. Furthermore, in order to conform to
the default output size of our Stable Diffusion model, which is
768x768, we have employed a centre cropping technique to create
720x720 cutouts. Subsequently, we have reshaped these cutouts to
768x768 using pixel interpolation.

2.2 Diffusion Models

Diffusion Models (DMs) [12] are a class of probabilistic models that
can be used to model an arbitrary data distribution q(x). The primary
observation behind these models is that it is difficult to directly
sample new elements from q(x) directly. Instead, diffusion models
rely on a so-called diffusion process which gradually transforms q(x)
into a noise distribution π(x), usually Gaussian N (0, I), which can
be conveniently sampled (see Figure 2). Subsequently, a function is
learnt to invert the noising process to recover the original data
distribution q(x). This method is similar to that of autoencoders, with
the distinction being the adoption of a fixed encoding process.

More precisely, we define a so-called forward process to transform
q(x) into π(x) as a Markov Chain of length T . The initial state of
this chain is our data distribution q(x) denoted as q(x0). Each step in
the Markov Chain leads to the acquisition of a new distribution
q(xt|xt−1), which is obtained by adding a small amount of noise to
the previous distribution. The final state of the chain, q(xT |xT−1), is
expected to approximate the noise distribution π(x). Equation 1
gives the definition of q(xt|xt−1) for Gaussian diffusion, where
βt ∈ (0, 1) is the diffusion rate at time t. Intuitively, at t = 0, the
distribution is close to N (xt−1,0), indicating that it is based on the
prior distribution with very little additional noise. At the other
extreme, at time t = T , the distribution approaches N (0, I),
implying that it converges to our unit Gaussian. This convergence is
facilitated by the gradual increase in diffusion rate βt over time. The
complete forward process that converts the data distribution into the
noise distribution is given by Equation 2.

q(xt|xt−1) := N (xt−1

√
1− βt, Iβt) (1)

q(x0···T ) := q(x0)

T∏
t=1

q(xt|xt−1) (2)

A reserve process is tasked to learn a function pθ(xt−1|xt) to
reverse the noising process. The complete reserve process can be
described using Equation 3. Note that θ is fixed in time so the weights
are time invariant. When training has been completed, the backward
process, pθ(x0···T ), can produce new samples of q(x) based on
sampled Gaussian noise, and the forward process may be disregarded.

p(xT ) := N (0, I), pθ(x0···T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

Image synthesis studies commonly implement pθ(xt−1|xt) with a
time-conditional UNet [27, 28, 26, 14, 42] (see Appendix A). The
model is trained using a loss function that corresponds to a
reweighted version of the variation lower bound [27]. In this context,
repeatably applying pθ(xt−1|xt) can be interpreted as a sequence of
T equally weighted denoising autoencoders with the objective to
predict the noise that was added to x0 given xt. As the UNet is tasked
to predict noise, it is typically denoted as ϵθ(xt, t) which allows us to
write the loss function as in Equation 4. Consequently, the reserve
process can be defined as a subtraction of the predicted noise from xt.

LDM := Ex,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(xt, t)∥2

]
(4)

Unfortunately, due to these sequential evaluations, diffusion
models are computationally expensive. To address this, latent
diffusion models (LDMs) [14] first employ a VQ-VAE [34] to
transform the high-dimensional image space into a lower-dimensional
latent space. This significantly reduces computational complexity and
allows the diffusion model to focus on semantics rather than the
imperceptible details. Formally, the encoder function E of the
VQ-VAE takes an input image x ∈ RH×W×3 and generates a
corresponding latent representation z ∈ Rh×w×c with h < H and
w < W . These latents z are then used to train the diffusion model.
The loss function of the diffusion model has to be modified
accordingly to account for the use of the latent representation (see
Equation 5). The predicted output of a trained diffusion model can be
translated back into image space via the use of the decoder from the
VQ-VAE.

LLDM := EE(x),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t)∥2

]
(5)

2.2.1 Conditioning Mechanisms
These image synthesis diffusion models are also capable of modelling
conditional distributions q(x|y) by implementing pθ(xt−1|xt, y)
with a conditional denoising autoencoder, which is denoted as
ϵθ(zt, t, y). Recent studies have shown that y can be obtained from



Fig. 3: The Genfusion Pipeline (1) Fine-tuning: We start with 10 real-world images and a pretrained Stable Diffusion model. These images
are subsequently transformed to 768x768 size using centre cropping and pixel interpolation techniques to ensure consistency with the output
size of the diffusion model. DreamBooth fine-tuning is then performed on the model using 200 prior preservation images. (2) Generating: The
fine-tuning is applied twice, once for green apple trees and once for red apple trees, to control the distribution of apple colours in the generated
dataset. (3) Training: We use the generated data and annotate it manually with bounding box information to train a deep model.

various modalities such as class labels, text prompts or other images
[14, 26].

The latent diffusion study [14] implemented ϵθ(zt, t, y) by adding
cross-attention modules [32] into intermediate layers of the UNet
architecture. This was based on prior research that showed that
cross-attention can be applied to a wide variety of modalities besides
text [43, 44]. While in the transformer paper cross-attention is
performed on the output sentence conditioned on the input sentence,
in this context, cross-attention is performed on flattened intermediate
feature maps of the UNet conditioned on a vectorized representation
of y. To obtain a vector representation of y, a domain-specific
encoder τθ is introduced. For text conditional synthesis, τθ is
implemented as an unmasked transformer that processes a BERT [45]
encoded version of the input text prompt y.

The conditional model is trained based on image and condition
pairs via Equation 6, where both τθ and ϵθ are jointly optimised. It is
important to note that in Stable Diffusion [35], the unmasked
transformer was replaced with a frozen version of CLIP [29], thus
only requiring the optimisation of ϵθ .

LLDM := EE(x),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥2

]
(6)

2.2.2 Fine-tuning
The DreamBooth technique [16], showcases the potential of
fine-tuning a pretrained text conditional diffusion model to generate
new renditions of a given object by associating it with specific
pseudo-words. In this approach, a limited set of images
X = {xi|i ∈ 1, ..., N} depicting the same object, all with the same
conditioning text ys, are used to fine-tune the model. This results in
the model learning to associate ys with the object illustrated in X

The authors propose a very simple format for the condition text ys,
as illustrated in Equation 7. Here, the [identifier] refers to the
pseudo-word associated with the subject, while the [class noun]
serves as a coarse class descriptor of the subject (e.g., dog, apple,
tree, etc.). It is important to note that not all words can serve as
suitable pseudo-words, and the authors suggest identifying relatively
rare tokens in the vocabulary of the word tokenizer 1.

ys := ”a [identifier] [class noun]” E.g. ys = ”a sks tree” (7)

With the pairs of (xi, ys) obtained in this manner, the pretrained
model could resume training by using the standard conditional
LLDM loss. However, to avoid overfitting and language drift the
authors propose a so-called class-specific prior preservation loss,
which is a technique that involves regularising the model with its own

1In our implementation, we adopt the use of the pseudo-word ’sks’ as
proposed by the diffusers implementation [46].

generated samples. Specifically, the authors generate a second set of
images X (pr) using a frozen version of the pretrained model prior to
any fine-tuning. These images are generated using a conditioning text
y
(pr)
s that is equivalent to ys but omits the pseudo-word as shown in

Equation 8. The purpose of this regularisation is to encourage the
model to produce output images that are similar to those of the frozen
network when the pseudo-word is not present, thereby retaining its
prior knowledge of [class noun].

y(pr)
s := ”a [class noun]” E.g. y(pr)

s = ”a tree” (8)

Given the two sets X and X (pr), the loss function is defined as in
Equation 9. Here, x and x(pr) are drawn from the sets X and X (pr),
respectively. The variables ϵ and ϵ′ are sampled from the normal
distribution N (0, I), and λ controls the weight of the regularisation.
While DreamBooth focuses on Imagen [15], the described loss
function has been reformulated to be compatible with latent diffusion
models. See Appendix B for the implementation details.

LDreamBooth := EE(x),E(x(pr)),ϵ,ϵ′,t

[
∥ϵ− ϵθ(zt, t, τθ(ys))∥2

+ λ∥ϵ′ − ϵθ(z
(pr)
t , t, τθ(y

(pr)))∥2
]

(9)

2.3 Genfusion: Image Generator

Our objective was to generate an artificial training set by selecting a
small subset of images from the MinneApple training set for
fine-tuning purposes. Our study was based on the Stable Diffusion
v2.1 model as described in [47]. However, one of the major
challenges we encountered was to determine an optimal number of
images that would capture the diversity present in MinneApple.

The DreamBooth authors [16] state that it is possible to fine-tune a
diffusion model with a mere 3 to 5 images of the subject to replicate.
Nonetheless, our findings indicate that to capture the diversity present
in the MinneApple dataset, we required no less than 20 images. We
aimed to preserve the same distribution of apple colours, namely, 54
green and 482 red. To achieve this distribution in our generated
dataset, we fine-tuned the model twice. The first fine-tuning was done
using 10 green apple tree images, while the second was done using 10
red apple tree images. These 20 images were carefully selected from
the MinneApple train set, with an emphasis on optimising for a
diverse range of samples. During the generation process, we used the
green apple tree model 54 times and the red apple tree model 482
times to maintain the original distribution of apple colours in the
generated dataset. The complete dataset generation pipeline, hereafter
referred to as Genfusion, is visually represented in Figure 3.



(a) Generated Trees with Green Apples

(b) Generated Trees with Red Apples

Fig. 4: A subset of the generated images from our Genfusion image generation pipeline. For additional images, please refer to Appendix C.

In relation to the prompts employed during the fine-tuning process,
we defined ys and y

(pr)
s to be equivalent to the example prompts

outlined in Equations 7 and 8, respectively. Regarding the image data,
we defined the set X to be either 10 green apple trees or 10 red apple
trees sampled from MinneApple. Furthermore, the prior preservation
dataset X (pr) consisted of 200 images that were generated by the
model before the fine-tuning process. See Figure 4 for a subset of our
generated images 2.

2.3.1 Annotations

To reduce the effort required for annotation, we employed the
baseline model’s predictions on the MinneApple training set as a
preliminary proposal for bounding box annotations on our generated
data. We then proceeded to manually refine these predictions by
eliminating false positives and identifying apples that the detector had
missed. It is important to note that our approach is not constrained by
the requirement for a baseline model, as annotations could also have
been carried out entirely through manual means.

2.3.2 Preliminary Analysis: Generating Annotations

We did an investigation into how this fine-tuning methodology could
generalise to also automatically generate annotations. This section
provides a brief overview of the ideas that were explored. However,
due to current limitations, the results were not included in the main
experiment section. More details can be found in Appendix E.

Given the exceptional performance of diffusion models in
generating image data, the possibility of encoding annotation data
within the image was explored. Specifically, adding a new fourth
channel encoding locations with high-intensity dots at the centre of
objects. This method proved advantageous in scenarios with
overlapping objects, as the dots were easier to extract compared to
overlapping outlines of bounding boxes. However, it should be noted
that this encoding method does not preserve the width and height
information of the objects. Fortunately, recent works, such as
Segment Anything [8], have shown promise by using dots as guides

2All images in X and a subset of X (pr) are shown in Appendix D.

to create masks that accurately represent the object’s width and height
in the corresponding image location.

Unfortunately, the addition of a fourth channel to the input proved
to be problematic since the VQ-VAE from latent diffusion was
incapable of processing inputs with more than three channels. To
overcome this limitation, we conducted a preliminary analysis by
repurposing the blue channel as the annotation channel. Although this
decision may be regarded as somewhat dubious, it would adequately
serve the purpose of conducting an initial analysis on the capabilities
of this DreamBooth fine-tuning. Nonetheless, to ensure scientific
validity in our comparisons, it is necessary to contrast it with a
detector that has been exclusively trained on the red and green
information of the MinneApple dataset.

Upon fine-tuning the model on images in which the first two
channels consisted of colour information and the third channel held
our encoded annotations, we noted that the model seemed to be
capable of generating images with accurate annotations. The primary
limitation of this approach was that the information contained in the
annotation channel seemed to ”leak” to the other channels, resulting
in high-intensity dots at the centre of the apples in the red and green
channels. As expected, this resulted in severe overfitting when
training the model on the green and red colour channels.

An alternative option was to encode annotations as instance
segmentation masks. However, this method had limitations.
Retraining the VQ-VAE from latent diffusion would be necessary to
preserve small pixel intensity differences after encoding and
decoding. Unfortunately, within the scope of our study, undertaking
such a retraining process was not feasible.

2.4 YOLO Object Detectors
YOLOv5 and YOLOv8 are two architectures from the YOLO (You
Only Look Once) family [3, 48, 49]. YOLOv5 [40] utilises anchor
boxes to predict the bounding boxes and employs a three-stage
approach, which includes a backbone network, a neck network, and a
head network. The backbone network is based on the CSPDarknet
architecture [50], which incorporates depthwise convolutions to
improve computational efficiency. The neck network is a Path
Aggregation Network (PANet) [51] that merges the features from the



backbone network to produce a feature map with high semantic
information. The head network then performs detection by predicting
the bounding boxes and class probabilities from the feature map.

In contrast, YOLOv8 [41] lacks a published paper regarding its
design as of the current writing. However, an examination of the code
repository reveals that YOLOv8 employs an anchor-free approach,
reducing box predictions and accelerating the Non-Maximum
Suppression (NMS) process. Both YOLOv5 and YOLOv8
repositories offer default image augmentations, but for a fair
comparison, all augmentations were disabled. Additionally, both
architectures provide five scaled versions (nano, small, medium,
large, and extra-large), and this study presents results for all sizes.

2.5 Evaluation Metrics
To ensure a comprehensive evaluation of the object detectors, we will
utilise established evaluation metrics that have been employed in other
object detection datasets [17, 52, 53]. Specifically, we will report the
Average Precision (AP) [52] to summarise the precision-recall curve.

Formally, predicted bounding boxes are assigned to ground truth
bounding boxes by calculating their IoU (see Equation 10). To be
considered a correct detection, the IoU between the predicted
bounding box Bp and ground truth bounding box Bgt needs to
exceed a predefined threshold. We present, in line with other studies
[52, 53], our results with a threshold of 0.5 and 0.75.

IoU :=
Bp ∩Bgt

Bp ∪Bgt
(10)

After assigning predictions to ground truths, precision and recall
are calculated at multiple confidence thresholds, resulting in a
precision-recall curve denoted as p(r). The average precision (AP) is
computed as the mean precision at specific recall levels
(R = 0.0, 0.01, ..., 1). To mitigate fluctuations in p(r), the authors
[52] proposed interpolating precision by selecting the maximum
precision for recall levels greater than or equal to r (Equation 11).

AP :=
1

|R|
∑
r∈R

pinterp(r), pinterp(r) := max
r̃:r̃≥r

p(r̃) (11)

In addition to reporting the evaluation metrics at IoU thresholds
of 0.5 (AP@0.5) and 0.75 (AP@0.75). We use the COCO challenge
evaluation metric [53] as our primary performance measure, which
calculates the average AP scores over ten IoU thresholds ranging from
0.5 to 0.95 in increments of 0.05 (AP@0.5:0.05:0.95).

3 RESULTS

The methodology proposed in this study has been specifically
designed to evaluate the effectiveness of fine-tuning text-to-image
diffusion models for the purpose of generating datasets. The objective
was to create images that closely resemble the MinneApple
benchmark dataset [17]. To establish the effectiveness of our
approach, we manually annotated the generated images and
employed them to train various YOLOv5 and YOLOv8 models. Our
experimental setup is illustrated in Figure 6. Furthermore, a
preliminary analysis of an automated annotation generation technique
is presented in Appendix E but was excluded from this section due to
unsatisfactory results.

Fig. 6: Experiment Setup

Our experimental results, which are presented in Table 1, compare
the performance of models trained exclusively on the MinneApple
train set (baseline) with those trained on our generated data
(Genfusion). Results are presented for a wide range of YOLOv5 [40]
and YOLOv8 [41] model sizes. To account for uncertainties, we
trained each model five times, and the table reports the mean and
standard deviation of the AP metrics.

Table 1: AP evaluation metrics on the MinneApple test set, using
different YOLOv5 and YOLOv8 models trained over the generated
train set, compared to the model trained over the MinneApple train
set.

Dataset AP@0.5:0.05:0.95 AP@0.50 AP@0.75

Baseline
yolov8x 0.45 ±0.005 0.79 ±0.005 0.47 ±0.011

Genfusion
yolov8x 0.33 ±0.050 0.66 ±0.060 0.29 ±0.070

0.12 0.13 0.18

Baseline
yolov8l 0.45 ±0.008 0.78 ±0.009 0.47 ±0.008

Genfusion
yolov8l 0.35 ±0.019 0.70 ±0.011 0.32 ±0.031

0.10 0.08 0.15

Baseline
yolov8m 0.44 ±0.008 0.77 ±0.009 0.46 ±0.010

Genfusion
yolov8m 0.33 ±0.008 0.66 ±0.016 0.30 ±0.013

0.11 0.11 0.16

Baseline
yolov8s 0.43 ±0.009 0.75 ±0.005 0.44 ±0.009

Genfusion
yolov8s 0.32 ±0.024 0.66 ±0.024 0.28 ±0.036

0.11 0.09 0.16

Baseline
yolov8n 0.40 ±0.005 0.73 ±0.004 0.39 ±0.005

Genfusion
yolov8n 0.31 ±0.012 0.66 ±0.015 0.27 ±0.012

0.09 0.07 0.12

Baseline
yolov5x 0.45 ±0.010 0.77 ±0.013 0.47 ±0.013

Genfusion
yolov5x 0.35 ±0.011 0.69 ±0.011 0.31 ±0.023

0.10 0.08 0.16

Baseline
yolov5l 0.44 ±0.008 0.77 ±0.010 0.46 ±0.011

Genfusion
yolov5l 0.33 ±0.028 0.67 ±0.031 0.30 ±0.038

0.11 0.10 0.16

Baseline
yolov5m 0.43 ±0.007 0.76 ±0.005 0.44 ±0.009

Genfusion
yolov5m 0.33 ±0.016 0.67 ±0.016 0.29 ±0.022

0.10 0.09 0.15

Baseline
yolov5s 0.42 ±0.009 0.75 ±0.009 0.43 ±0.010

Genfusion
yolov5s 0.32 ±0.016 0.66 ±0.023 0.28 ±0.031

0.10 0.09 0.15

Baseline
yolov5n 0.39 ±0.004 0.73 ±0.005 0.39 ±0.009

Genfusion
yolov5n 0.27 ±0.028 0.61 ±0.043 0.20 ±0.037

0.12 0.12 0.19



Tree 1 Tree 2 Tree 3

(a) MinneApple Baseline (YOLOv8l)

(b) Genfusion (YOLOv8l)

Fig. 5: The predicted (white) and ground truth (green) bounding boxes of the YOLOv8l Baseline and Genfusion model from three of the images
from the MinneApple test set. The blue arrows indicate instances where the Genfusion model predicts two bounding boxes for a single apple.

As can be seen, the baseline models achieve the highest AP scores.
However, our generated data demonstrated relatively good
performance in comparison. The AP difference between the baseline
and our method is consistently between 0.09 and 0.12 for
AP@0.5:0.05:0.95. However, for AP@0.75, the difference is higher,
ranging from 0.12 to 0.19, indicating that with our method the
locations of the boxes are less precise. Additionally, as expected, our
findings confirm that larger models outperform smaller ones with the
highest AP of 0.35 for Genfusion using the YOLOv8l and YOLOv5x
models. Interestingly, YOLOv5 and YOLOv8 exhibit similar AP
scores, suggesting that the improvements in YOLOv8 do not
significantly affect detection performance for this task.

To comprehend the implications of a 0.10 AP difference in terms
of detections, we conducted a qualitative analysis on predictions of
the YOLOv8l model. Our evaluation revealed that the baseline and
generated approaches produced similar outcomes, as illustrated in
Figure 5. The detectors demonstrated a reasonable ability to predict
the location of apples in the trees. As expected, in cases where the
baseline failed to detect a specific apple, the generated approach also
showed similar failure rates, particularly for instances located in areas
with high levels of shading or occlusions.

Notably, when comparing the Genfusion model with the baseline,
the former primarily encountered difficulty in detecting very small
apples (Tree 1) or very large apples (Tree 3). In addition, the results
show that the Genfusion model had a slight tendency to detect a
single apple as two separate entities in cases where they were large or

shaded, as indicated by the blue arrows, contributing to its lower AP
scores at 0.75 IoU.

4 DISCUSSION

Although the present study shows diffusion models in image
generation as a promising research direction, our findings reveal a
limitation inherent in either our data generation or annotation process.
Specifically, our detectors exhibit difficulty detecting apples that are
exceptionally large or small. When looking at the generated data it
became apparent that our data generator was incapable of mimicking
these scenarios. This could be because they were not subjected to a
diverse enough representation of the real-world scenario. In addition,
it is possible that our manual annotation quality falls short of the
standards set by MinneApple, who reported spending up to 30
minutes annotating a single image [17]; including in-person reviews
to ensure annotation consistency.

With regards to the automatic annotation generation approach
described in Appendix E, its complete potential is yet to be fully
explored. However, the findings obtained in this study serve to
showcase the versatility of this fine-tuning approach and suggest
promising avenues for future research. Specifically, future work
could investigate the origin of the observed channel leakage and
explore alternative loss functions that may help regulate information
flow from the annotation channel to other channels.

Our investigation only demonstrated the feasibility of this approach
for apple detection purposes. Nevertheless, we hypothesise that this



methodology has the potential to be extended to other domains based
on the capability of pretrained diffusion models to effectively model
diverse image distributions. Ultimately, our research highlights the
potential for this methodology to be applied successfully in real-world
scenarios that are characterised by a scarcity of data, particularly in
domains where data collection is challenging.

5 CONCLUSION

In conclusion, our proposed framework for generating training
images for apple detection in orchards exhibits promising results and
addresses two key research questions. Firstly, we demonstrate that a
pretrained diffusion model can be effectively fine-tuned using the
Dreambooth technique to generate a dataset representative of a
specific real-world scenario. This process enables the generation of
high-quality synthetic images, bridging the gap between limited real
data availability and the need for extensive datasets. As a result, it
opens new possibilities for employing deep learning techniques in
data scares domains.

Secondly, we investigate how the performance of an object
detector trained on data generated with our framework, named
Genfusion, compares to one trained on real data when evaluated in a
real-world scenario. Although our approach does not achieve
complete parity with the performance of models trained on real-world
data, it yields remarkably close approximations, with an average
precision (AP) difference ranging from 0.09 to 0.12. We hypothesise
that when fine-tuning with a larger and more diverse set of orchard
samples, our approach could rival the performance of real-world data.
However, such a trade-off necessitates careful consideration of the
time taken for data acquisition and the performance achieved.

6 FUTURE WORK

Further research endeavours can explore the refinement of the
fine-tuning process by employing a larger or more diverse collection
of images, aiming to approach the performance level achieved by
real-world data. The results presented in this paper also warrant
additional investigation into text-to-image dataset generation for
more complex detection tasks. For instance, replication of renowned
object detection benchmark datasets such as COCO [53] or Pascal
VOC [52] can provide valuable insights into the robustness and
scalability of the proposed framework.

Moreover, it is advisable for future work to explore alternative
prompting techniques. In this study, we focused on training and
inference utilising the prompt ”A sks tree”. However, the versatility
of diffusion models would enable their utilisation for augmentations
involving varied prompts, such as ”A sks tree in the shadow” or ”A
sks tree in the snow”. Exploring these alternative prompting
strategies can potentially enhance the model’s ability to capture and
interpret diverse contextual information, leading to improved
performance and adaptability in real-world scenarios.

BROADER IMPACT

The present study expands upon the pre-existing body of literature
regarding diffusion models, DreamBooth fine-tuning, and deep object
detectors by integrating them into one coherent framework. This
research is a notable advancement in simplifying the data acquisition
process in vision based domains.

Unfortunately, generative models have a significant downside as
they can be employed for malevolent purposes. One of the most
concerning applications is the generation of fake images and videos
of prominent figures for political motives. These fabricated images
are a contemporary problem and have become significantly more
widespread with the advent of generative models. Moreover, the easy
training of classifiers or detection models in combination with these
fabricated images presents a complex issue, amplifying the potential
for misuse.

On the other hand, Genfusion and comparable data generation
methodologies can offer significant advantages in improving object
detection and recognition in data-sparse domains. In the agricultural
industry, for example, limited availability of data relating to specific

outliers, such as particular diseases, can make it challenging to
develop accurate and effective crop disease management tools. In
addition, medical imaging datasets often face limitations owing to
privacy concerns, posing a challenge for training computer vision
models to perform image analysis for medical assistance. By
generating supplementary data to train computer vision models, such
techniques can potentially enhance the accuracy and reliability of
such systems, thus leading to substantial practical benefits.

In conclusion, the use of generated image data for training deep
models presents both opportunities and ethical challenges. While
these approaches can enhance the accuracy and reliability of
computer vision systems and their practical benefits, it is essential to
address the potential malicious applications. Therefore, it is essential
to continue exploring and implementing ethical practices that balance
the benefits and risks of these techniques. By doing so, we can ensure
that these advancements in this research area contribute positively to
the broader world.
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A TIME-CONDITIONAL UNET

This research uses Stable Diffusion v2.1 [47] published by Stability AI. This version is trained at a resolution of 768x768. It has the same number
of parameters in the UNet as version 1.5 but uses OpenCLIP-ViT/H [54] as the text encoder. Interestingly, it was observed that comprehensive
diagrams illustrating the UNet architecture were unavailable. Consequently, we took the initiative to create these diagrams based on an in-depth
analysis of the code. A high-level overview of the architecture can be found in Figure 7.

Fig. 7: The time-conditional UNet architecture

This network is conditioned on a timestep t using the sinusoidal positional embedding [32]. This timestep embedding is projected into the
ResNet blocks (Figure 11) present in the down and up sampling blocks (see Figures 8, 9, 10b and 10a). The text conditioning is achieved by
tokinization and using CLIP to acquire an embedding which is also injected into the down and up sampling blocks (see Figures 8 and 9).

Fig. 8: Cross Attention Down Block module from the time-conditional UNet architecture

Fig. 9: Cross Attention Up Block module from the time-conditional UNet architecture



(a) Up Block (without attention)
(b) Down Block (without attention)

(c) Up Sampler (d) Cross Attention Mid Block

Fig. 10: Smaller modules from the time-conditional UNet architecture

The ResNet block depicted in Figure 11 constitutes a sequence of normalisation, activation, and convolutional operations with a residual
connection. The time embedding is subjected to a linear layer which serves to transform it to the required dimension before performing a basic
element-wise addition. Additionally, the block may include an optional 1x1 kernel convolution to increase or reduce the number of feature maps
outputted by the block.

Fig. 11: ResNet block submodule from the time-conditional UNet architecture

The Transformer Model depicted in Figure 12 can be clearly divided into three distinct stages. Initially, the feature maps undergo a
transformation from Rw×h×c → Rw·h×c to convert the feature maps into one-dimensional vectors. Subsequently, a linear layer is added to
alter the number of vectors from c to nh · d, where nh denotes the number of attention heads and d signifies the dimension of each head. In the
second stage, a basic transformer is applied with a self-attention operation on the flattened feature maps and a cross-attention with the text
embedding. In the final stage, the 1D vectors are converted back into c two-dimensional feature maps. For more information on the definition
of K, V , and Q for this cross-attention see Section 3.3 in [14].

Fig. 12: Transformer Model submodule from the time-conditional UNet architecture



B IMPLEMENTATION DETAILS

B.1 Software & Hardware Specifications

The present paper showcases a series of experiments, all of which were executed on hardware and software configurations that are identical.
Additionally, the YOLO models utilised in the experiments were trained using uniform hyperparameters. See Table 2 for an overview.

Hardware Specifications
Hardware Virtual Machine

CPU 24 Cores @ 2.00GHz

RAM 60 GB

GPU NVIDIA A40 (Accessed via a
VMware SVGA II Adapter)

GPU Memory 16 GB

CUDA version 11.6

Software Specifications
Software Version

PyTorch 1.12.1+cu116

Torchvision 0.13.1+cu116

Python 3.8.13

YOLO Training Specifications
Parameter Value

Batch size 8

Learning rate 10−2

Testing IoU 0.45

NMS IoU 0.45

Precision float16 (AMP [55])

Optimiser SGD

Momentum 0.937

Weight decay 5 · 10−4

Table 2: Overview of the hardware and software specifications used during the experiments.

B.2 DreamBooth Specifications

To effectively run DreamBooth fine-tuning with our limited VRAM, we implemented several optimisations following the guidelines suggested
by [46]. These optimisations include utilising a memory efficient optimiser [56] and attention mechanism [57], automatic mixed precision [55],
and setting the ’grad’ attributes in PyTorch tensors to None instead of 0 when calling zero grad().

B.2.1 8-bit Optimiser

In the field of deep learning, commonly used optimisation techniques include stochastic gradient descent (SGD) with momentum and Adam,
both of which involve the tracking of gradient information over time. While the use of past gradient values can accelerate the optimisation
process, it comes at the cost of increased memory requirements. Recently, [56] introduced a new optimisation approach that employs 8-bit
statistics for tracking gradient information. This method achieves comparable performance levels to traditional stateful optimisers that rely on
32-bit optimiser states, but with lower memory requirements. To fine-tune the Stable Diffusion models with our limited VRAM, an 8-bit version
of the Adam algorithm was employed for this study.

B.2.2 Memory-efficient Attention

It has been observed that the time and memory complexity of attention usually follows the order of O(n2). However, in the research article
published by [57], they have introduced a straightforward and efficient algorithm that greatly decreases the memory usage for attention. The
proposed algorithm provides a method for performing self-attention that requires only O(logn) memory. Moreover, the authors have
demonstrated that the function can be differentiated while preserving its memory efficiency. In this study, we have employed this attention
mechanism in the transformer modules from the UNet (see Figure 12).

B.2.3 Hyperparameters

In reference to hyperparameters, we have set a train batch size of 1 due to our limited VRAM and a learning rate of 2 · 10−6, with a constant
learning rate scheduler. We utilised the Adam optimiser, with β1 = 0.9 and β1 = 0.999, with a weight decay of 10−2 and an epsilon value of
10−8. Furthermore, we configured the λ value for the prior preservation regularisation to be 1.0.

In terms of training, we have used 6 epochs. However, for the annotation generation fine-tuning, as described in Appendix E, we have
determined that a minimum of 12 epochs is necessary. We hypothesize that the network requires more time to ”unlearn” the information that is
typically present in the blue channel and learn to associate it with our encoded annotations.



C GENERATED IMAGES

Fig. 13: A bigger subset of our generated images from our Genfusion Pipeline.



D INSTANCE IMAGES & CLASS IMAGES

Fig. 14: The 10 green apple tree images sampled from the MinneApple [17] train set. X is created from these samples by creating crops of
720x720 and then pixel interpolating them to match the output size of Stable Diffusion (768x768).



Fig. 15: The 10 red apple tree images sampled from the MinneApple [17] train set. X is created from these samples by creating crops of
720x720 and then pixel interpolating them to match the output size of Stable Diffusion (768x768).



Fig. 16: A subset of the X (pr) class specific images generated with the prompt ”A tree” before fine-tuning.



Fig. 17: The rationale behind selecting the prompt ”a tree” instead of ”an apple tree” was based on the non-realistic images generated with the
”an apple tree” prompt.



E PRELIMINARY INVESTIGATION INTO AUTOMATIC ANNOTATION GENERATION

Given the impressive performance of diffusion models in generating image data, we explored the potential of encoding annotation data within
the image data. Initially, our approach involved introducing a fourth channel to encode object locations. However, we encountered a challenge
when utilising the VQ-VAE from latent diffusion, as it could only process 3D inputs. To overcome this limitation, we repurposed the blue
channel as the annotation channel. This decision was based on the hypothesis that the blue information would be less critical for detecting green
and red apples. Additionally, considering the scope of our study, undertaking a retraining process for the VQ-VAE was not feasible.

Our initial experiment involved the encoding of annotation information as the outlines of bounding boxes, as depicted on the left side of
Figure 18. The right side of the figure demonstrates the results obtained from the fine-tuning process conducted on images with two colour
channels, along with the bounding box outline in the blue channel. Notably, the fine-tuning procedure for these images required approximately
double the number of epochs compared to fine-tuning on regular 3-colour channel images in order to achieve successful results. We hypothesise
that the pretrained diffusion model initially needs to undergo a process of ’unlearning’ the conventional understanding of the content typically
associated with the blue channel.

Fig. 18: Fine-tuning with bounding box outlines. The input images (left) corresponded to the same MinneApple images as those used for the
generator presented in the main paper. However, in this case, the blue channel information was substituted with bounding box outlines. Upon
fine-tuning, the resulting images (right) showed promising outcomes, as the blue channel featured proper annotations upon initial inspection.

Although these results appear promising regarding accurate marking of the apples in the images, when wanting to extract bounding box
coordinates challenges arise when confronted with scenarios involving overlapping bounding boxes. To overcome this limitation, we considered
encoding the annotations as instance segmentation masks. However, this method also presented its own limitations. Specifically, it would
necessitate retraining the VQ-VAE from latent diffusion to preserve subtle pixel intensity differences in the blue channel after encoding and
decoding. Unfortunately, given the scope of our study, undertaking such a retraining process was deemed infeasible.

Subsequently, we explored an encoding approach utilising high-intensity dots positioned at the centre of each object, as illustrated on the
left in Figure 19. With this dot-based encoding method, annotations could be easily extracted using ”find contours” and ”image moments,”
offering notable advantages in scenarios with overlapping objects. The right side of Figure 19 illustrates that, once again, the diffusion model
was capable of generating accurate information in the blue channel. However, it is important to acknowledge that this encoding technique
does not preserve the width and height information of the objects. To address this limitation, recent studies, such as Segment Anything [8],
have demonstrated promising results by utilising dots as guides to create masks that accurately represent the object’s width and height at the
corresponding image location. Notably, in the dot-based annotation encoding approach, we observed that the high-intensity areas needed to
cover a minimum of 5x5 pixels to achieve satisfactory outcomes. Additionally, we observed that if the pixel areas were smaller, these pixel dots
were automatically removed by the VQ-VAE.

Fig. 19: Fine-tuning with dot annotations. This is the same fine-tuning as in the previous figure on bounding box outlines with input images
(left) being from MinneApples and output images (right) showing promising results when inspecting the annotation (blue) channel.



Upon further investigation, we discovered an increased occurrence of generated images did not bear any resemblance to the images from
MinneApple and instead depicted regular trees. To address this issue, we employed several postprocessing techniques. Firstly, we performed
Principal Component Analysis (PCA) on all the images to reduce them to 50 dimensions. Subsequently, we applied t-Distributed Stochastic
Neighbor Embedding (t-SNE) dimensionality reduction to further reduce them to 2 dimensions. Finally, we applied K-Means clustering with a
cluster count of 3 and retained only the images in the largest cluster. Consequently, we created a dataset similar to the one described in the main
paper, containing 54 green apple trees and 842 red apple trees.

With this newly created dataset, we devised the following experimental plan to evaluate the accuracy of our approach, as depicted in Figure
20. In this figure, we refer to an image with three colour channels as ”RGB”, an image with an empty blue channel as ”RG∅”, and an image
with encoded annotations in the blue channel as ”RGAnnotation”. As a baseline, we wanted to train an object detector solely on the red and
blue colour information to test our hypothesis regarding the lesser significance of the blue channel for our detection task. Subsequently, with
our generated dataset we wanted to train a detector on both the extracted annotations and, as an ablation, on manually annotated data. This
approach would allow us to ascertain the performance drop attributable to the absence of the blue channel, the utilisation of generated data, and
the use of our extracted annotations.

Now with this dataset created, we designed the following experiment plan to test the accuracy of our approach, see Figure 20. In this figure,
we refer to an image with three colour channels as ”RGB”, an image with an empty blue channel as ”RG∅”, and an image with encoded
annotations in the third channel as ”RGAnnotation”. As a baseline, we trained an object detector on only the red and blue colour information to
test our hypothesis of the blue channel being of less significance for our detection task. Then we wanted to create a dataset using our dot-based
annotation generation technique and train a detector both on our extracted annotations and as an ablation on manual annotations. In this way
we would be certain what drop in performance was due to the dropping of the blue channel, what drop in performance was due to the use of
generated data, and what drop in performance was due to our extracted annotations. Unfortunately, we never finished this plan in its entirety
because we found one vital flaw when training on the generated data.

Fig. 20: Experiment Setup

While conducting our analysis, we discovered that a model trained on MinneApple RGB achieved an AP@0.5:0.05:0.95 score of 0.43,
whereas a model trained on RG∅ obtained a score of 0.37, resulting in a marginal AP difference of only 0.06. However, as we transitioned
towards utilising the generated data, we encountered a significant limitation that affected our findings. Specifically, we observed that the
information from the annotation channel exhibited a phenomenon of ’leakage’ to the other two channels, as illustrated in Figure 21. This
leakage manifested as the presence of high-intensity dots at the centre of apples in the red and green channels, leading to severe overfitting even
when training the model exclusively on the green and red colour channels. In an attempt to mitigate this overfitting issue, we explored various
hyperparameter adjustments, including lower learning rates, switching from SGD to Adam, and experimenting with models of different sizes
ranging from medium to nano. Despite these efforts, we were unable to achieve an AP metric surpassing the 0.10 score.

Fig. 21: Zoomed in depiction of the red and green colour channels of a generated image revealing the discussed ’channel leakage’.



Unfortunately, we did not have the resources to further study this avenue of research, however, our results do show the versatility this
DreamBooth fine-tuning has. Based on the findings and limitations identified in our experiments, there are several options for future research.
The following areas deserve further exploration and investigation:

1. Leakage Mitigation: The issue of information leakage from the annotation channel to other colour channels poses a significant challenge
in training models solely on the green and red colour channels. Future work should focus on developing techniques to effectively address
this leakage problem, such as advanced regularisation methods or novel network architectures specifically designed to handle multi-channel
annotations.

2. Enhanced Encoding Techniques: While the dot-based encoding approach demonstrated advantages in scenarios with overlapping
objects, it fell short in preserving the width and height information of the objects. Building upon recent studies like Segment Anything
[8], future research could investigate the development of innovative encoding techniques that accurately capture both the spatial location
and the size attributes of objects in a more comprehensive manner.
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